xPC Target™ 4
User’s Guide

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
xPC Target™ User’s Guide
© COPYRIGHT 1999-2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 1999
November 2000
June 2001
September 2001
July 2002

June 2004
August 2004
October 2004
November 2004
March 2005
September 2005
March 2006
May 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009

First printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1 (Release 11.1)

Revised for Version 1.1 (Release 12)
Revised for Version 1.2 (Release 12.1)
Revised for Version 1.3 (Release 12.1+)
Revised for Version 2 (Release 13)
Revised for Version 2.5 (Release 14)
Revised for Version 2.6 (Release 14+)
Revised for Version 2.6.1 (Release 14SP1)
Revised for Version 2.7 (Release 14SP1+)
Revised for Version 2.7.2 (Release 14SP2)
Revised for Version 2.8 (Release 14SP3)
Revised for Version 2.9 (Release 2006a)
Revised for Version 3.0 (Release 2006a+)
Revised for Version 3.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.4 (Release 2008a)
Revised for Version 4.0 (Release 2008b)
Revised for Version 4.1 (Release 2009a)
Revised for Version 4.2 (Release 2009b)

Target and Scope Objects

Target Objectsottt 1-2
What Is a Target Object?cccviiieiine... 1-2
Scope Objectsccuiiiiiiiiiiii i 1-3
What Is a Scope Object?ccoiiiiiiiennnn... 1-3
Scope Object Types ... oot ii e 14

Targets and Scopes in the MATLAB Interface

2|

Working with Target Objects 2-2
Accessing Help for Target Objects 2-2
Creating Target Objectscciviiinnnennnn.. 2-2
Deleting Target Objectsccviuiininnnennn. 2-3
Displaying Target Object Properties 2-4
Setting Target Object Properties from the Host PC 2-4
Getting the Value of a Target Object Property 2-5
Using the Method Syntax with Target Objects 2-6

Working with Scope Objects 2-7
Accessing Help for Scope Objects 2-7
Displaying Scope Object Properties for a Single Scope 2-7
Displaying Scope Object Properties for All Scopes 2-8
Setting the Value of a Scope Property 2-9
Getting the Value of a Scope Property 2-10
Using the Method Syntax with Scope Objects 2-11
Acquiring Signal Data with Scopes of Type File 2-11
Acquiring Signal Data into Multiple, Dynamically Named

Files with Scopesof Type File 2-12
Advanced Data Acquisition Topics 2-14

Signals and Parameters

3

Monitoring Signals, 3-2
Introduction 3-2
Signal Monitoring with xPC Target Explorer 3-2
Signal Monitoring with the MATLAB Interface 3-9
Monitoring Stateflow States 3-10

Signal Tracing, 3-15
Introduction 3-15
Signal Tracing with xPC Target Explorer 3-15
Signal Tracing with the MATLAB Interface 3-39
Signal Tracing with xPC Target Scope Blocks 3-48
Signal Tracing with Simulink External Mode 3-50
Signal Tracing with a Web Browser 3-54

Signal Loggingt 3-56
Introduction 3-56
Signal Logging with xPC Target Explorer 3-56
Signal Logging in the MATLAB Interface 3-59
Signal Logging with a Web Browser 3-63

Parameter Tuning and Inlining Parameters 3-65
Introduction 3-65
Parameter Tuning with xPC Target Explorer 3-66
Parameter Tuning with the MATLAB Interface 3-69
Parameter Tuning with Simulink External Mode 3-72
Parameter Tuning with a Web Browser 3-75
Saving and Reloading Application Parameters with the

MATLAB Interfacecoiiiiiiiiennn.. 3-75
Inlined Parameters i, 3-78

q |

DOSLoader Modec.c0 .. 4-2
Introduction e e 4-2

vi Contents

DOSLoader Mode Overviewcoiuuiennnn.. 4-2

Restrictionsciuiiiiiniiiiiiiii i 4-3
Updating the xPC Target Environment 4-4
Creating a DOS System Disk 4-6
DOSLoader TargetSetup 4-7
Introduction i 4-7
Updating Environment Properties and Creating a Boot
Disk 4-7
Copying the Kernel to Flash Memory 4-9
Creating a Target Application for DOSLoader Mode 4-11
Creating DOSLoader Files with a Command-Line
Interface i e 4-11

Embedded Option

5

Introduction 5-2
xPC Target Embedded Option Modes 5-3
Introduction 5-3
Standalone Mode Overviewcouuiieeeno... 5-4
Restrictionst 5-6
Embedded Option Setup 5-7
Updating the xPC Target Environment 5-7
Creating a DOS System Disk 5-9
Stand-Alone Target Setup 5-10
Before You Start 5-10
Updating Environment Properties 5-11
Creating a Kernel/Target Application 5-11
Copying the Kernel/Target Application to the Target PC
Flash Disk i, 5-12

vii

viii

Software Environment and Demos

6

Using Environment Properties and Functions 6-2
Introduction 6-2
Getting a List of Environment Properties for Default Target

PCs o e 6-2
Changing Environment Properties with xPC Target

Explorer e 6-3
Changing Environment Properties with a Command-Line

Interface for Default Target PCs 6-7

xPCTargetDemoscciiiiiiinnn... 6-9
Introduction 6-9
To Locate or Edit a Demo Script 6-11

Working with Target PC Environments

7

Target Environment Command-Line Interface 7-2
Creating Target PC Environment Object Containers 7-2
Displaying Target PC Environment Object Property

Values e 7-2
Setting Target PC Environment Collection Object

Properties 7-3
Adding Target PC Environment Collection Objects 7-4
Removing Target PC Environment Collection Objects 7-4
Getting Target PC Environment Object Names 7-4
Changing Target PC Environment Object Defaults 7-5
Working with Particular Target PC Object

Environments i 7-5

Using the Target PC Command-Line Interface

8|

Target PC Command-Line Interface 8-2

Contents

Introduction00 8-2

Using Target Application Methods on the Target PC 8-2
Manipulating Target Object Properties from the Target

PC e 8-3
Manipulating Scope Objects from the Target PC 8-4
Manipulating Scope Object Properties from the Target

PC e 8-5
Aliasing with Variable Commands on the Target PC 8-6

Working with Target PC Files and File Systems

2

Introduction 9-2
FTP and File System Objects 9-4
Using xpctarget.ftp Objects 9-5
OV VIEW &ttt ettt ettt e et e e 9-5
Accessing Files on a Specific Target PC 9-6
Listing the Contents of the Target PC Folder 9-7
Retrieving a File from the Target PC to the Host PC 9-7
Copying a File from the Host PC to the Target PC 9-8
Using xpctarget.fs Objects 9-9
L0 =) T 1= 9-9
Accessing File Systems from a Specific Target PC 9-10
Retrieving the Contents of a File from the Target PC to the
Host PC .. e e e 9-11
Removing a File from the Target PC 9-14
Getting a List of Open Files on the Target PC 9-14
Getting Information about a File on the Target PC 9-15

Getting Information about a Disk on the Target PC 9-16

X

Contents

Graphical User Interfaces

xPC Target Interface Blocks to Simulink Models 10-2
Introduction 10-2
Simulink User Interface Model 10-2
Creating a Custom Graphical Interface 10-3
To xPC Target Blockc0iiiiiiiiniennn. 10-4
From xPC Target Block 10-5
Creating a Target Application Model 10-6
Marking Block Parameters 10-7
Marking Block Signals 10-9

xPC Target Web Browser Interface

Web Browser Interface 11-2
Introduction 11-2
Connecting the Web Interface Through TCP/IP 11-2
Connecting the Web Interface Through RS-232 11-3
Usingthe MainPane 11-7
Changing WWW Propertiesccviuevnn... 11-9
Viewing Signals with a Web Browser 11-10
Viewing Parameters with a Web Browser 11-11
Changing Access Levels to the Web Browser 11-11

Interrupts Versus Polling

Polling Mode 12-2
Introduction 12-2
xPC Target Kernel Polling Mode 12-2
Interrupt Mode i 12-3
PollingModecciiiiii i 12-5
Setting the Polling Modec..... 12-7
Restrictions Introduced by Polling Mode 12-10

Controlling the Target Application 12-13
Polling Mode Performance 12-14
Polling Mode and Multicore Processors 12-15

Incorporating Fortran Code into the xPC Target

Environment
Before You Start 13-2
Introduction i i 13-2
Simulink Demos Folder 13-2
Prerequisites 13-3
Steps to Incorporate Fortran in the Simulink Software for
xPCTarget 13-3
Step-by-Step Example of Fortran and xPC Target 13-5
InThis Example ..., 13-5
Creating an xPC Target Atmosphere Model for Fortran .. 13-5
Compiling Fortran Files 13-7
Creating a C-MEX Wrapper S-Function 13-8
Compiling and Linking the Wrapper S-Function 13-12
Validating the Fortran Code and Wrapper S-Function ... 13-14
Preparing the Model for the xPC Target Application
Build ... 13-14
Building and Running the xPC Target Application 13-16

Vector CANape Support

14

Vector CANape 14-2
Introduction i i 14-2
xPC Target and Vector CANape Limitations 14-3

Configuring the xPC Target and Vector CANape
Software 14-4
Setting Up and Building the Model 14-4

xi

xii

Creating a New Vector CANape Project to Associate with a

Particular Target Application 14-6
Configuring the Vector CANape Device 14-7
Providing A2L (ASAP2) Files for the Vector CANape

Database i e 14-10

Event Mode Data Acquisition 14-11
Guidelinesot e e 14-11
Limitations0utiiini e 14-11

15

OVerVIieW ..ttt ittt e e 15-2
BIOS Settings ...t 15-3
BootingIssues0 i, 15-4
Is Your Host PC MATLAB Interface Halted? 15-4
Is Your Target PC Unable to Boot? 15-4
Is the Target PC Halted? 15-5
Communicationsc.c 0 iiiiieeeennnn. 15-6
Is There Communication Between Your PCs? 15-6
Why Does the xPC Target System Lose Connection with the
Host PC When Downloading Some Models? 15-7
How Can I Diagnose Network Problems with the xPC
Target System?ciiiiiii i, 15-9

Installation, Configuration, and Build

Troubleshooting 15-10
Troubleshooting xpctest Results 15-10
Troubleshooting Build Issues 15-17
General xPC Target Troubleshooting 15-19
General I/0 Troubleshooting Guidelines 15-19
Can I View the Contents of the Target PC Display on the
Host PC? . i e 15-20

Contents

Why Do Attempts to Run My Model Cause CPU Overload

Messages on the Target PC? 15-20
How Can I Obtain PCI Board Information for My xPC

Target System?ciiiiiiiiiiiiiinn. 15-25
What Sample Time Can I Expect from the xPC Target

Software? e e e 15-26
Why Is My Requested xPC Target Sample Time Different

from the Measured Sample Time? 15-26
Why Did I Get Error -10: Invalid File ID on the Target

PO e 15-28
Can I Write Custom xPC Target Device Drivers? 15-28
Can I Create a Stand-Alone xPC Target Application to

Interact with a Target Application? 15-29
Can Signal Outputs from Virtual Blocks Be Tagged? 15-29
Why Has the Stop Time Changed? 15-30
Why Do I Get a File System Disabled Error? 15-30
Can the Target PC Hard Drive Contain Multiple

Partitions? e 15-31
Why Does the getparamid Function Return Nothing? 15-31
How Do I Handle Register Rollover for xPC Target Encoder

Blocks? .. e e e 15-31

Why Do I Get Compile Error When Compiling Models? ... 15-32

Getting Updated xPC Target Releases and Help 15-33
How to Get Updated xPC Target Releases 15-33
Are You Working with a New xPC Target Release? 15-33
Refer to the MathWorks Support Web Site 15-34
Refer to the Documentation 15-34

Target PC Command-Line Interface Reference

16

Target PC Commands 16-2
Introduction i 16-2
Target Object Methods, 16-2
Target Object Property Commands 16-3
Scope Object Methods, 16-5
Scope Object Property Commands 16-6
Aliasing with Variable Commands 16-8

xiii

xiv

Function Reference

17

18

Software Environment 17-2
GUIL e 17-3
Test ... 17-4
Target Application Objects 17-5
Scope Objects ... 17-7
File and File System Objects 17-8
Directoriesttt 17-8
B . e 17-8
File System i 17-8
xPC Target Environment Collection Object 17-10
xPC Target Utilitiesciiiiiiinno... 17-11
Functions

Index

Contents

Target and Scope Objects

Before you can work with xPC Target™ target and scope objects, you should
understand the concept of target and scope objects.

® “Target Objects” on page 1-2
® “Scope Objects” on page 1-3

1 Target and Scope Objects

1-2

Target Objects

What Is a Target Object?

The xPC Target software uses a target object (of class xpctarget.xpc) to
represent the target kernel and your target application. Use target object
functions to run and control real-time applications on the target PC with
scope objects to collect signal data.

See “Function Reference” and “Functions” for a reference of the target
functions.

An understanding of the target object properties and methods will help you to
control and test your application on the target PC.

A target object on the host PC represents the interface to a target application
and the kernel on the target PC. You use target objects to run and control
the target application.

When you change a target object property on the host PC, information is
exchanged with the target PC and the target application.

To create a target object,

1 Build a target application. The xPC Target software creates a target object
during the build process.

2 Use the target object constructor function xpc. In the MATLAB® Command
window, type tg = xpctarget.xpc.

Target objects are of class xpctarget.xpc. A target object has associated
properties and methods specific to that object.

Scope Obijects

Scope Objects

In this section...

“What Is a Scope Object?” on page 1-3
“Scope Object Types” on page 1-4

What Is a Scope Object?

The xPC Target software uses scope objects to represent scopes on the target
PC. Use scope object functions to view and collect signal data.

See “Function Reference” and “Functions” for a reference of the scope
functions.

The xPC Target software uses scopes and scope objects as an alternative to
using Simulink® scopes and external mode. A scope can exist as part of a
Simulink model system or outside a model system.

e A scope that is part of a Simulink model system is a scope block. You add
an xPC Target scope block to the model, build an application from that
model, and download that application to the target PC.

® A scope that is outside a model is not a scope block. For example, if you
create a scope with the addscope method, that scope is not part of a
model system. You add this scope to the model after the model has been
downloaded and initialized.

This difference affects when and how the scope executes to acquire data.

Scope blocks inherit sample times. A scope block in the root model or a normal
subsystem executes at the sample time of its input signals. A scope block in a
conditionally executed (triggered/enabled) subsystem executes whenever the
containing subsystem executes. Note that in the latter case, the scope might
acquire samples at irregular intervals.

A scope that is not part of a model always executes at the base sample time

of the model. Thus, it might acquire repeated samples. For example, if the
model base sample time is 0.001, and you add to the scope a signal whose

1-3

1 Target and Scope Objects

1-4

sample time 1s 0.005, the scope will acquire five identical samples for this
signal, and then the next five identical samples, and so on.

Understanding the structure of scope objects will help you to use the MATLAB
command-line interface to view and collect signal data.

Refer to Chapter 1, “Target and Scope Objects” for a description of how to use
these objects, properties, and methods.

A scope object on the host PC represents a scope on the target PC. You use
scope objects to observe the signals from your target application during a
real-time run or analyze the data after the run is finished.

To create a scope object,

¢ Add an xPC Target scope block to your Simulink model, build the model to
create a scope, and then use the target object method getscope to create a
scope object.

e Use the target object method addscope to create a scope, create a scope
object, and assign the scope properties to the scope object.

A scope object has associated properties and methods specific to that object.

To read about scope object types, see “Scope Object Types” on page 1-4.

Scope Object Types

You can create scopes of type target, host, or file. Upon creation, The
xPC Target software assigns the appropriate scope object data type for the
scope type:

e xpctarget.xpcsctg for scopes of type target
e xpctarget.xpcschost for scopes of type host

e xpctarget.xpcfs for scopes of type file

® xpctarget.xpcsc encompasses the object properties common to all the
scope object data types. The xPC Target software creates this object if you
create multiple scopes of different types for one model and combine those
scopes, for example, into a scope vector.

Scope Obijects

Each scope object type has a group of object properties particular to that
object type.

1-5

1 Target and Scope Objects

1-6

The xpcsctg scope object of type target has the following object properties:

® Grid
® |\lode
® YLimit

The xpcschost scope object of type host has the following object properties:

® Data

® Time
The xpcfs scope object of type file has the following object properties:

® AutoRestart

® Filename

* Mode

® WriteSize

The xpcsc scope object has the following object properties. The other scope
objects have these properties in common:
® Application

® Decimation

® NumPrePostSamples

® NumSamples

® ScopelD

® Status

® TriggerLevel

® TriggerMode

® TriggerSample

® TriggerScope

® TriggerSignal

Scope Obijects

® TriggerSlope
* Type

See the scope object function get (scope object) for a description of these
object properties.

1-7

1 Target and Scope Objects

Targets and Scopes 1n the
MATLAB Interface

You can work with xPC Target target and scope objects through the MATLAB
interface (MATLAB Command Window), the target PC command line, a

Web browser, or an xPC Target API. This chapter describes how to use the
MATLAB interface to work with the target and scope objects in the following
sections. See Chapter 8, “Using the Target PC Command-Line Interface” for a
description of the target PC command-line interface.

e “Working with Target Objects” on page 2-2
e “Working with Scope Objects” on page 2-7

2 Targets and Scopes in the MATLAB® Interface

Working with Target Objects

In this section...

“Accessing Help for Target Objects” on page 2-2

“Creating Target Objects” on page 2-2

“Deleting Target Objects” on page 2-3

“Displaying Target Object Properties” on page 2-4

“Setting Target Object Properties from the Host PC” on page 2-4
“Getting the Value of a Target Object Property” on page 2-5
“Using the Method Syntax with Target Objects” on page 2-6

Accessing Help for Target Objects

See “Function Reference” and “Functions” for a reference of the target object
functions.

The target application object methods allow you to control a target application
on the target PC from the host PC. You enter target application object
methods in the MATLAB window on the host PC or use M-file scripts. To
access the M-file help for these methods, use the syntax

help xpctarget.xpc/method_name

If you want to control the target application from the target PC, use target PC
commands. See Chapter 8, “Using the Target PC Command-Line Interface”.

Creating Target Objects

To create a target object, perform the following

1 Build a target application. the xPC Target software creates a target object
during the build process.

2 To create a single target object, or to create multiple target objects in your
system, use the target object constructor function xpc (see xpctarget.xpc)
as follows. For example, the following creates a target object connected

Working with Target Objects

to the host through an RS-232 connection. In the MATLAB Command
Window, type

tg = xpctarget.xpc('rs232', 'COM1', '115200')

The resulting target object is tg.

3 To check a connection between a host and a target, use the target function
targetping. For example,

tg.targetping

Note To ensure that you always know which target PC is associated with
your target object, you should always use this method to create target
objects.

4 To create a single target object, or to create the first of many targets in
your system, use the target object constructor function xpctarget.xpc as
follows. In the MATLAB Command Window, type

tg = xpctarget.xpc

The resulting target object is tg.

Note If you choose to use this syntax to create a target object, you should use
the xPC Target software Explorer to configure your target PC. This ensures
that command-line interactions know the correct target PC to work with.

Deleting Target Objects

To delete a target object, use the target object destructor function delete . In
the MATLAB window, type

tg.delete

If there are any scopes, file system, or FTP objects still associated with the
target, this function removes all those scope objects as well.

2-3

2 Targets and Scopes in the MATLAB® Interface

Displaying Target Object Properties

You might want to list the target object properties to monitor a target
application. The properties include the execution time and the average task
execution time.

After you build a target application and target object from a Simulink model,
you can list the target object properties. This procedure uses the default
target object name tg as an example.

1 In the MATLAB window, type
tg

The current target application properties are uploaded to the host PC, and
MATLAB displays a list of the target object properties with the updated
values.

Note that the target object properties for TimeLog, StatelLog, OutputLog,
and TETLog are not updated at this time.

2 Type
+tg

The Status property changes from stopped to running, and the log
properties change to Acquiring.

For a list of target object properties with a description, see the target object
function get (target application object).

Setting Target Object Properties from the Host PC

You can change a target object property by using the xPC Target software set
method or the dot notation on the host PC. (See “User Interaction” in the xPC
Target Getting Started Guide guide for limitations on target property changes
to sample times.)

With the xPC Target software you can use either a function syntax or an
object property syntax to change the target object properties. The syntax
set(target_object, property _name,new_property value) can be
replaced by

Working with Target Objects

target_object.property_name = new_property_value

For example, to change the stop time mode for the target object tg,
¢ In the MATLAB window, type

tg.stoptime = 1000
® Alternatively, you can type

set(tg, 'stoptime', 1000)

When you change a target object property, the new property value is
downloaded to the target PC. The xPC Target kernel then receives the
information and changes the behavior of the target application.

To get a list of the writable properties, type set(target_object). The build

process assigns the default name of the target object to tg.

Getting the Value of a Target Object Property

You can list a property value in the MATLAB window or assign that value
to a MATLAB variable. With the xPC Target software you can use either a
function syntax or an object property syntax.
The syntax get(target_object, property_name) can be replaced by
target_object.property_name
For example, to access the stop time,
¢ In the MATLAB window, type
endrun = tg.stoptime
e Alternatively, you can type

endrun = get(tg, 'stoptime') or tg.get('stoptime')

To get a list of readable properties, type target_object. Without assignment
to a variable, the property values are listed in the MATLAB window.

2 Targets and Scopes in the MATLAB® Interface

2-6

Signals are not target object properties. To get the value of the Integratori
signal from the model xpcosc,

¢ In the MATLAB window, type

outputvalue = getsignal (tg,0)

where 0 is the signal index.

e Alternatively, you can type

tg.getsignal(0)

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Using the Method Syntax with Target Objects

Use the method syntax to run a target object method. The syntax
method_name (target object, argument list) can be replaced with

target_object.method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
you must enter method names in full, and in lowercase. For example, to add a
scope of type target with a scope index of 1,

¢ In the MATLAB window, type

tg.addscope('target',1)

® Alternatively, you can type

addscope(tg, 'target', 1)

Working with Scope Obijects

Working with Scope Obijects

In this section...

“Accessing Help for Scope Objects” on page 2-7

“Displaying Scope Object Properties for a Single Scope” on page 2-7
“Displaying Scope Object Properties for All Scopes” on page 2-8
“Setting the Value of a Scope Property” on page 2-9

“Getting the Value of a Scope Property” on page 2-10

“Using the Method Syntax with Scope Objects” on page 2-11
“Acquiring Signal Data with Scopes of Type File” on page 2-11

“Acquiring Signal Data into Multiple, Dynamically Named Files with
Scopes of Type File” on page 2-12

“Advanced Data Acquisition Topics” on page 2-14

Accessing Help for Scope Objects

See “Function Reference” and “Functions” for a reference of the scope object
functions.

The scope object methods allow you to control scopes on your target PC.

If you want to control the target application from the target PC, use target PC
commands. See Chapter 8, “Using the Target PC Command-Line Interface”.

Displaying Scope Object Properties for a Single Scope
To list the properties of a single scope object, sc1,
1 In the MATLAB window, type

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

MATLAB creates the scope object sc1 from a previously created scope.

2 Type

2-7

2 Targets and Scopes in the MATLAB® Interface

sci

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of the scope object properties with the updated
values. Because sc1 is a vector with a single element, you could also type
sci1(1) or sci1([1]).

Note Only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

For a list of target object properties with a description, see the target function
get (target application object).

Displaying Scope Object Properties for All Scopes

To list the properties of all scope objects associated with the target object tg,
¢ In the MATLAB window, type
getscope(tg) or tg.getscope

MATLAB displays a list of all scope objects associated with the target
object.

e Alternatively, type

allscopes = getscope(tg)

or

allscopes = tg.getscope

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of all the scope object properties with the updated
values. To list some of the scopes, use the vector index. For example, to list
the first and third scopes, type allscopes([1,3]).

For a list of target object properties with a description, see the target function
get (target application object).

Working with Scope Obijects

Setting the Value of a Scope Property

With the xPC Target software you can use either a function syntax or an
object property syntax. The syntax set(scope_object, property_name,
new_property_value) can be replaced by

scope_object(index_vector).property_name = new_property_value

For example, to change the trigger mode for the scope object sc1,

¢ In the MATLAB window, type

sc1.triggermode = 'signal’

e Alternatively, you can type

set(scl, 'triggermode', 'signal')

or

scl.set('triggermode', 'signal')

Note that you cannot use dot notation to set vector object properties. To assign
properties to a vector of scopes, use the set method. For example, assume
you have a variable sc12 for two scopes, 1 and 2. To set the NumSamples
property of these scopes to 300,

1 In the MATLAB window, type

set(sc12, 'NumSamples',300)

To get a list of the writable properties, type set(scope_object).

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

2-9

2 Targets and Scopes in the MATLAB® Interface

2-10

Getting the Value of a Scope Property

You can list a property value in the MATLAB window or assign that value
to a MATLAB variable. With the xPC Target software you can use either a
function syntax or an object property syntax.

The syntax get(scope_object vector, property name) can be replaced by

scope_object_vector(index_vector).property_name

For example, to assign the number of samples from the scope object sc1,

¢ In the MATLAB window, type

numsamples = sci1.NumSamples

e Alternatively, you can type

numsamples = get(sc1, 'NumSamples')

or

sc1.get(NumSamples)

Note that you cannot use dot notation to get the values of vector object
properties. To get properties of a vector of scopes, use the get method. For
example, assume you have two scopes, 1 and 2, assigned to the variable sc12.

To get the value of NumSamples for these scopes, in the MATLAB window, type

get(sc12, 'NumSamples')

You get a result like the following:

ans =
[300]
[300]

To get a list of readable properties, type scope_object. The property values
are listed in the MATLAB window.

Working with Scope Obijects

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Using the Method Syntax with Scope Obijects

Use the method syntax to run a scope object method. The syntax
method_name (scope_object vector, argument_list) can be replaced
with either

® scope_object.method_name(argument_list)

® scope_object_vector(index_vector).method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
enter method names in full, and in lowercase. For example, to add signals to
the first scope in a vector of all scopes,

¢ In the MATLAB window, type
allscopes(1).addsignal([0,1])
e Alternatively, you can type

addsignal(allscopes(1), [0,1])

Acquiring Signal Data with Scopes of Type File

You can acquire signal data into a file on the target PC. To do so, you add
a scope of type file to the application. After you build an application and
download it to the target PC, you can add a scope of type file to that
application.

For example, to add a scope of type file named sc to the application, and
to add signal 4 to that scope,

1 In the MATLAB window, type
sc=tg.addscope('file')

The xPC Target software creates a scope of type file for the application.

2-11

2 Targets and Scopes in the MATLAB® Interface

2-12

2 Type
sc.addsignal(4)

3 To start the scope, type

+scC

4 To start the target application, type
+tg

The xPC Target software adds signal 4 to the scope of type file. When you
start the scope and application, the scope saves the signal data for signal 4 to
a file, by default named C:\data.dat.

See “Scope of Type File” on page 3-50 in Chapter 3, “Signals and Parameters”
for a description of scopes of type file.

If you want to acquire signal data into multiple files, see “Acquiring Signal
Data into Multiple, Dynamically Named Files with Scopes of Type File” on
page 2-12.

Acquiring Signal Data into Multiple, Dynamically
Named Files with Scopes of Type File

You can acquire signal data into multiple, dynamically named files on the
target PC. For example, you can acquire data into multiple files to examine
one file while the scope continues to acquire data into other files. To acquire
data in multiple files, add a scope of type file to the application. After you
build an application and download it to the target PC, you can add a scope
of type file to that application. You can then configure that scope to log
signal data to multiple files.

For example, configure a scope of type file named sc to the application with
the following characteristics:

® Logs signal data into up to nine files whose sizes do not exceed 4096 bytes.
® (Creates files whose names contain the string file_.dat.

¢ Contains signal 4.

Working with Scope Obijects

1 In the MATLAB window, type
tg.StopTime=-1;
This parameter directs the target application to run indefinitely.
2 To add a scope of type file, type
sc=tg.addscope('file');
3 To enable the file scope to create multiple log files, type
sc.DynamicFileName="'on';
Enable this setting to enable logging to multiple files.

4 To enable file scopes to collect data up to the number of samples, then
start over again, type

sc.AutoRestart='on';
Use this setting for the creation of multiple log files.
5 To limit each log file size to 4096, type
sc.MaxWriteFileSize=4096;

You must use this property. Set MaxWriteFileSize to a multiple of the
WriteSize property.

6 To enable the file scope to create multiple log files with the same name
pattern, type

sc.Filename="'file_<%>.dat';

This sequence directs the software to create up to nine log files, file 1.dat
to file_9.dat on the target PC file system.

7 To add signal 4 to the file scope, type

sc.addsignal(4);

8 To start the scope, type

2-13

2 Targets and Scopes in the MATLAB® Interface

2-14

+scC

9 To start the target application, type
+tg

The software creates a log file named file_1.dat and writes data to
that file. When the size of file_1.dat reaches 4096 bytes (value of
MaxWriteFileSize), the software closes the file and creates file 2.dat
for writing until its size reaches 4096 bytes. The software repeats this
sequence until it fills the last log file, file 9.dat. If the target application
continues to run and collect data after file_9.dat, the software reopens
file 1.dat and continues to log data, overwriting the existing contents. It
cycles through the other log files sequentially.

If you want to acquire signal data into a single file, see “Acquiring Signal Data
with Scopes of Type File” on page 2-11.

Advanced Data Acquisition Topics

The moment that an xPC Target scope begins to acquire data is user
configurable. You can have xPC Target scopes acquire data right away, or
define triggers for scopes such that the xPC Target scopes wait until they
are triggered to acquire data. You can configure xPC Target scopes to start
acquiring data when the following scope trigger conditions are met. These
are known as trigger modes.

® Freerun — Starts to acquire data as soon as the scope is started (default)

e Software — Starts to acquire data in response to a user request. You
generate a user request when you call the scope method trigger or the
scope function xPCScSoftwareTrigger.

® Signal — Starts to acquire data when a particular signal has crossed a
preset level

® Scope — Starts to acquire data based on when another (triggering) scope
starts

You can use several properties to further refine when a scope acquires data.
For example, if you set a scope to trigger on a signal (Signal trigger mode),
you can configure the scope to specify the following:

Working with Scope Obijects

® The signal to trigger the scope (required)

® The trigger level that the signal must cross to trigger the scope to start
acquiring data

e Whether the scope should trigger on a rising signal, falling signal, or either
one

In the following topics, the trigger point is the sample during which the scope
trigger condition is satisfied. For signal triggering, the trigger point is the
sample during which the trigger signal passes through the trigger level. At
the trigger point, the scope acquires the first sample. By default, scopes start
acquiring data from the trigger point onwards. You can modify this behavior
using the pre- and posttriggering.

® Pretriggering — Starts to acquire data N moments before a trigger occurs
® Posttriggering — Starts to acquire data N moments after a trigger occurs
The NumPrePostSamples scope property controls the pre- and posttriggering

operation. This property specifies the number of samples to be collected
before or after a trigger event.

e If NumPrePostSamples is a negative number, the scope is in pretriggering
mode, where it starts collecting samples before the trigger event.

e If NumPrePostSamples is a positive number, the scope is in a posttriggering
mode, where it starts collecting samples after the trigger event.

The following topics describe two examples of acquiring data:

* “Triggering One Scope with Another Scope to Acquire Data” on page 2-16
— Describes a configuration of one scope to trigger another using the
concept of pre- and posttriggering

® “Acquiring Gap-Free Data Using Two Scopes” on page 2-18 — Describes
how to apply the concept of triggering one scope with another to acquire
gap-free data

2-15

2 Targets and Scopes in the MATLAB® Interface

2-16

Triggering One Scope with Another Scope to Acquire Data

This section describes the concept of triggering one scope with another to
acquire data. The description uses actual scope objects and properties to
describe triggers.

The ability to have one scope trigger another, and to delay retrieving data
from the second after a trigger event on the first, is most useful when data
acquisition for the second scope is triggered after data acquisition for the
first scope is complete. In the following explanation, Scope 2 is triggered
by Scope 1.

® Assume two scopes objects are configured as a vector with the command

sc = tg.addscope('host', [1 2]);

¢ For Scope 1, set the following values:
= sc(1).Scopeld = 1
= sc(1).NumSamples = N
= sci1.NumPrePostSamples = P
® For Scope 2, set the following values:
= sc(2).Scopeld = 2
= sc(2).TriggerMode = 'Scope'
= sc(2).TriggerScope =1
(2)

= sc .TriggerSample = range 0 to (N + P - 1)

In the figures below, TP is the trigger point or sample where a trigger event
occurs. Scope 1 begins acquiring data as described.

In the simplest case, where P = 0, Scope 1 acquires data right away.

Working with Scope Objects

Pretriggering (P<0) on page 2-17 illustrates the behavior if P, the value of
NumPrePostSamples, is negative. In this case, Scope 1 starts acquiring data
|P| samples before TP. Scope 2 begins to acquire data only after TP occurs.

End of
Acquisition

Pretriggering (P < 0)
First Sample
Acquired
: N i
TP
Pl (N + P) !
Trigger
Event

Pretriggering (P<0)

Posttriggering (P>0) on page 2-17 illustrates the behavior if P, the value of
NumPrePostSamples, is positive. In this case, Scope 1 starts acquiring data

|P| samples after TP occurs.

Posttriggering (P > 0)
End of
TP Acquisition

i (N+ P) |

L P N

k— First Sample |

Acquired

Trigger
Event

Posttriggering (P>0)

2-17

2 Targets and Scopes in the MATLAB® Interface

2-18

Scope 1 triggers Scope 2 after the trigger event occurs. The following describes
some of the ways you can trigger Scope 2:

® sc(2).TriggerSample = 0 — Causes Scope 2 to be triggered when Scope 1
1s triggered. TP for both scopes as at the same sample.

® sc(2).TriggerSample = n > 0 — Causes TP for Scope 2 to be n samples
after TP for Scope 1. Note that setting sc(2).TriggerSample to a value
larger than (N + P - 1) does not cause an error; it implies that Scope 2
will never trigger, since Scope 1 will never acquire more than (N + P -
1) samples after TP.

® sc(2).TriggerSample = 0 < n < (N + P) — Enables you to obtain
some of the functionality that is available with pre- or posttriggering. For
example, if you have the following Scope 1 and Scope 2 settings,

= Scope 1 has sc(1) .NumPrePostSamples = 0 (no pre- or posttriggering)
= Scope 2 has sc(2).TriggerSample = 10
= Scope 2 has sc(2) .NumPrePostSample = 0

The behavior displayed by Scope 2 is equivalent to having
sc(2).TriggerSample = 0 and sc(2).NumPrePostSamples = 10.

® sc(2).TriggerSample = -1 — Causes Scope 2 to start acquiring data
from the sample after Scope 1 stops acquiring.

Note The difference between setting TriggerSample = (N + P - 1),
where N and P are the parameters of the triggering scope (Scope 1) and
TriggerSample = -1 is that in the former case, the first sample of Scope 2
will be at the same time as the last sample of Scope 1, whereas in the latter,
the first sample of Scope 2 will be one sample after the last sample of Scope 1.
This means that in the former case both scopes acquire simultaneously for
one sample, and in the latter they will never simultaneously acquire.

Acquiring Gap-Free Data Using Two Scopes

With two scopes, you can acquire gap-free data. Gap-free data is data that two
scopes acquire consecutively, with no overlap. The first scope acquires data
up to N, then stops. The second scope begins to acquire data at N+1. This is
functionality that you cannot achieve through pre- or posttriggering.

Working with Scope Obijects

Acquisition of Gap-Free Data on page 2-19 graphically illustrates how scopes
trigger one another. In this example, the TriggerMode property of Scope 1 is
set to 'Software'. This allows Scope 1 to be software triggered to acquire
data when it receives the command sc1.trigger.

Software Trigoer
{initialization)

Scope 1
NumSamples=500
Triggerscope=2
TriggerSample= -1

Trigger at

Trigger at Acquisition End
Acguisition End

Scope 2
Mum=amples=2500
Triggerscope=1
Trignersample= -1

Acquisition of Gap-Free Data

The following procedure describes how you can programmatically acquire
gap-free data with two scopes.

1 Ensure that you have already built and downloaded the Simulink model
xpcosc.mdl to the target PC.

2 In the MATLAB Command Window, assign tg to the target PC and set the
StopTime property to 1. For example,

tg=xpctarget.xpc
tg.StopTime = 1;

3 Add two scopes of type host to the target application. You can assign the
two scopes to a vector, sc, so that you can work with both scopes with one
command.

2-19

2 Targets and Scopes in the MATLAB® Interface

2-20

sc = tg.addscope('host', [1 2]);
4 Add the signals of interest (0 and 1) to both scopes.
addsignal(sc,[0 11);

5 Set the NumSamples property for both scopes to 500 and the TriggerSample
property for both scopes to -1. With this property setting, each scope
triggers the next scope at the end of its 500 sample acquisition.

set(sc, 'NumSamples', 500, 'TriggerSample', -1)

6 Set the TriggerMode property for both scopes to 'Scope'. Set the
TriggerScope property such that each scope is triggered by the other.

set(sc, 'TriggerMode', 'Scope');
sc(1).TriggerScope = 2;
sc(2).TriggerScope = 1;

7 Set up storage for time, t, and signal, data acquisition.

t =1[1;
data zeros(0, 2);

8 Start both scopes and the model.

start(sc);
start(tg);

Note that both scopes receive exactly the same signals, 0 and 1.
9 Trigger scope 1 to start acquiring data.

scNum = 1;
sc(scNum).trigger;

Setting scNum to 1 indicates that scope 1 will acquire data first.
10 Start acquiring data using the two scopes to double buffer the data.
while (1)

% Wait until this scope has finished acquiring 500 samples
% or the model stops (scope is interrupted).

Working with Scope Obijects

while ~(strcmp(sc(scNum).Status, 'Finished') |

strcmp(sc(scNum).Status, 'Interrupted’

% Stop buffering data when the model stops.

if strcmp(tg.Status, 'stopped')

break

end

% Save the data.

t(end + 1 : end + 500)

data(end + 1 : end + 500, :)

% Restart this scope.

start(sc(scNum));

% Switch to the next scope.
%Shortcut for if(scNum==1) scNum=2;else scNum=1,end
scNum = 3 - scNum;
end

| ...
)), end

sc(scNum) .Time;
sc(scNum) .Data;

11 When done, remove the scopes.

% Remove the scopes we added.
remscope(tg,[1 2]);

The following is a complete code listing for the preceding double-buffering
data acquisition procedure. You can copy and paste this code into an M-file
and run it after you download the model (xpcosc.mdl) to the target PC. This
example assumes that the communication speed between the host and target
PC is fast enough to handle the number of samples and can acquire the full
data set before the next acquisition cycles starts. In a similar way, you can use
more than two scopes to implement a triple- or quadruple-buffering scheme.

% Assumes model xpcosc.mdl has been built and loaded on the target PC.
% Attach to the target PC and set StopTime to 1 sec.

tg = xpctarget.xpc;

tg.StopTime = 1;

% Add two host scopes.

sc = tg.addscope('host', [1 2]);

% [0 1] are the signals of interest. Add to both scopes.
addsignal(sc,[0 1]);

% Each scope triggers next scope at end of a 500 sample acquisition.
set(sc, 'NumSamples', 500, 'TriggerSample', -1);

set(sc, 'TriggerMode', 'Scope');

sc(1).TriggerScope = 2;

2-21

2 Targets and Scopes in the MATLAB® Interface

sc(2).TriggerScope = 1;
% Initialize time and data log.
t =111
data = zeros(0, 2);
% Start the scopes and the model.
start(sc);
start(tg);
% Start things off by triggering scope 1.
scNum = 1;
sc(scNum).trigger;
% Use the two scopes as a double buffer to log the data.
while (1)
% Wait until this scope has finished acquiring 500 samples
% or the model stops (scope is interrupted).
while ~(strcmp(sc(scNum).Status, 'Finished') ||
strcmp(sc(scNum).Status, 'Interrupted')), end
% Stop buffering data when the model stops.
if strcmp(tg.Status, 'stopped')
break
end
% Save the data.
t(end + 1 : end + 500) sc(scNum).Time;
data(end + 1 : end + 500, :) = sc(scNum).Data;
% Restart this scope.

start(sc(scNum));
% Switch to the next scope.
scNum = 3 - scNum;
end
% Remove the scopes we added.
remscope(tg,[1 2]);
% Plot the data.
plot(t,data); grid on; legend('Signal 0','Signal 1');

2-22

Signals and Parameters

Changing parameters in your target application while it is running in real
time, and checking the results by viewing signal data, are two important
prototyping tasks. The xPC Target software includes command-line and

graphical user interfaces to complete these tasks. This chapter includes the
following sections:

e “Monitoring Signals” on page 3-2
e “Signal Tracing” on page 3-15

“Signal Logging” on page 3-56

“Parameter Tuning and Inlining Parameters” on page 3-65

3 Signals and Parameters

Monitoring Signals

In this section...

“Introduction” on page 3-2
“Signal Monitoring with xPC Target Explorer” on page 3-2
“Signal Monitoring with the MATLAB Interface” on page 3-9

“Monitoring Stateflow States” on page 3-10

Introduction

Signal monitoring is the process for acquiring signal data during a real-time
run without time information. The advantage with signal monitoring is that
there is no additional load on the real-time tasks. Use signal monitoring to
acquire signal data without creating scopes that run on the target PC.

In addition to signal monitoring, the xPC Target software enables you to
monitor Stateflow® states as test points through the xPC Target Explorer
and MATLAB command-line interfaces. You designate data or a state in a
Stateflow diagram as a test point. This makes it observable during execution.
See the Stateflow and Stateflow® Coder™ User’s Guide for details. You

can work with Stateflow states as you do with xPC Target signals, such as
monitoring or plotting Stateflow states.

After you start running a target application, you can use signal monitoring to
get signal data.

Note xPC Target Explorer works with multidimensional signals in
column-major format.

Signal Monitoring with xPC Target Explorer

This procedure uses the model xpcosc.mdl as an example, and assumes
you created and downloaded the target application to the target PC. For
meaningful values, the target application should be running.

Monitoring Signals

File Target Application

1 If xPC Target Explorer is not started, start it now. In xPC Target
Explorer, select the node of the running target application in which you
are interested, for example, xpcosc.

The target PC Target Application Properties pane appears.

2 In the Solver pane, change the Stop time parameter to inf (infinity).
Click Apply.

) #PC Target Explorer

Tools Help

=101 %]

-]

B X8y = |H W

| %P Target Hierarchy

I TargetPiC1 Target Application Properties

-------- [#] sf_ca
test.d
wpe_c
[#] #po_c
wpe_c
[#] #po_c
[#] #po_c
wpoos
[#] #poaos
wpoos

< [#] #poos
TargetPC1

Canfigurati

[_

PCI Dewice
¥pCOsC

ﬁ Mode

#PC 2

[rf?m_ TargetF'E2 1=
[r‘?@ TargetF'l:3 i

D

Froperty | Yalue
Target name: TargetPC1
Application name: ¥pCoIc
Stop time; Inf
Sample time; 0.00025
E=ecution time; a
CPU OverLoad: none
Finimum TET: 9999939
b airmum TET: a
M asimum logging zamp... 1BEEE
M amimumm logging wiapz 0
Mumber of signals: T
Mumber of parameters; 7
Mumber of scopes: 0

Eresert Apply

— Application properties

Stop time: Iinf

Sample time: |D.DDU25

Log mode: ITime-equidistant

=l

— Logging

[Time: Jrout

[~ Dutput: |5..;,u[

[~ State: |;.;.;,u[

[~ TET: |tet

Send to MATLAB Workspace |

| B

| Refresh Enabled

3 To get the list of signals in the target application, expand the target
application node, then expand the Model Hierarchy node under the target
application node.

3 Signals and Parameters

The model hierarchy expands to show the Simulink objects (signals and
parameters) in the Simulink model.

EI TargetPC1
" &y Configuration
E| ----- Bl File System

PR e local disk oy ; .
______ BB PCl devices]Turgat?(ﬁlasyﬂemdrwas

E RPCOEC .I!I.[][]“E[]ﬁ[]ﬂ ﬂDdE
oy ﬁ kodel Hierarchy
........ EI Gain]
........ EI Gairnd
........ Gain?
] Gain Porometers

-------- =1 Signal Generator —1L
------- = Gain]
------- ~+= Gainl

------- = Gaind .
------- ~= |ntegrator 5|gl‘|l]|5
....... = Inteqrator

------- ~= Signal Generator
....... ~= Sum

[~ #PC Scopes

[+ TargetPC3
L@ T arnatPi™ 2

Monitoring Signals

The Model Hierarchy node can have the following types of nodes:

Icons Nodes

fr Subsystems, including their signals and parameter

o1 Referenced models, including their signals set as test points
= Parameters

| Signals

i

Stateflow states set as test points

Only xPC Target tunable parameters and signals of the application, as
represented in the Simulink model, appear in the Model Hierarchy node.

Note This example currently has only parameters and signals. If a block
has a name that consists of only spaces, xPC Target Explorer does not
display a node for that block. To monitor a signal from that block, provide
an alphanumeric name for that block and rebuild and download that block.

If you make changes (such as adding an xPC Target scope) to the model
associated with the downloaded application, then rebuild that model and
download it again to the target PC, you should reconnect to the target PC
to refresh the Model Hierarchy node.

To view only labeled signals (the xPC Target software refers to Simulink
signal names as signal labels) ,:
a Open the xpcosc.mdl file.

b Right-click a signal line and name that signal. For example, right-click
the output of the Signal Generator block and name it SignalG.

¢ Build and download the updated model.

d When the updated model is displayed in xPC Target Explorer, right-click
the Model Hierarchy node and select View Only Labeled Signals.
This command assumes that you have labeled one or more signals in
your model.

3 Signals and Parameters

e Re-expand the Model Hierarchy node to see the labeled signals.

To view the block path for a labeled signal, hover over the labeled signal.
For example,

“argetPC2 k
“argetPC3

To display all the model signals again, right-click the Model Hierarchy
node and select View All Signals. You can still view the signal label by
hovering over the labeled signal. For example,

Monitoring Signals

Elﬁ Model Hierarchy

£

-------- =1 Integratarl
-------- I=1 Signal Generatar

....... = Gain

....... = Gainl

....... = Gain?

------- ~= |ntegrator

....... ~= Inteaqratar

....... ~= Signal Generatar
....... ~= Sum EE%

1R P Soopes

f Return to the model, remove the signal name you added, and rebuild and
download the target application. The remaining examples in this section
assume that you do not have any labelled signals in your model.

5 To go to the corresponding Simulink model subsystem, right-click the
application node and select Go to Simulink subsystem or block.

6 To get the value of a signal, select the signal in the Model Hierarchy node.

3 Signals and Parameters

The value of the signal is shown in the right pane.

) ®xPC Target Explorer =10l %]

File Target Application Tools Help "
g X 8|y =« |H| W
|><F'C Target Hierarchy ITargetF’Cl: Signal name: Sum [1 = 1]
El-- TargetPC1 ﬂ 1
v St Configuration 1 1]

[EL File System
g, floppy &%
[local disk ot
Hi PCl Devices
=1--[#] spooss

= Gain

= Ganl
= [RaiN2
2 |ntegrator

= Integrator]
-2 Sighal Generator
B S LI
EII-""E@ =PC Scopes
[TargetPC2 i
[z T arnetPC3 =~

| Refresh Enabled

7 Right-click the target application and select Start.
The application starts running.

8 To change the numeric format display of the signal, right-click the Model
Hierarchy node and select Edit Signals Format String.

The Display Format String dialog box is displayed.

3-8

Monitoring Signals

-} Display Format £ O] x|
Enter the display format string for signals:

|%n.25g|

(0] 14 Canicel |

9 Enter the signal format. Use one of the following. By default, the format is
%0. 25g.

Type Description

%e or %E Exponential format using e or E

%f Floating point

%Q Signed value printed in f or e format depending on

which 1s smaller

o°
@

Signed value printed in f or E format depending on
which is smaller

Monitoring Signals from Referenced Models

You can monitor signals from referenced models the same way that you do
any other signal, with the exception that you must set the test point for the
signal in the referenced model before you can monitor it.

Signal Monitoring with the MATLAB Interface

This procedure uses the model xpc_osc3.mdl as an example, and assumes
you created and downloaded the target application to the target PC. It also
assumes that you have assigned tg to the appropriate target PC.
1 To get a list of signals, type either

set(tg, 'ShowSignals', 'On')

or

tg.ShowSignals='0On'

3-9

3 Signals and Parameters

The latter command causes the MATLAB window to display a list of the
target object properties for the available signals. For example, the signals
for the model xpc_osc3.mdl are shown below. Note that the Label column
1s empty because there are no labelled signals in the model. If your signal
has a label, its label is displayed in this column.

ShowSignals = on

Signals = INDEX VALUE BLOCK NAME LABEL
0 0.000000 Signal Generator
1 0.000000 Transfer Fcn

2 To get the value of a signal, use the getsignal method. In the MATLAB
Command Window, type

tg.getsignal(0)

where 0 is the signal index. the MATLABinterface displays the value of
signal 1.

ans=
3.731

Note The xPC Target software lists referenced model signals with their full
block path. For example, xpc_osc5/childmodel/gain.

See also “Signal Tracing with the MATLAB Interface” on page 3-39.

Monitoring Stateflow States

This procedure uses the model 01d_sf _car.mdl as an example. It describes
one way to set Stateflow states as test points for monitoring.

1 In the MATLAB window, type

old_sf_car

2 In the Simulink window, click Simulation > Configuration Parameters.

The Configuration Parameters dialog box is displayed for the model.

3-10

Monitoring Signals

3 Click the Real-Time Workshop node.
The Real-Time Workshop pane opens.

4 To build a basic target application, in the Target selection section, click
the Browse button at the System target file list. Click xpctarget.tlc,
then click OK.

5 As necessary, you can click the xPC Target options node and continue to
make changes.

6 When you are done, click OK.
7 In the old_sf_car model, double-click the shift_logic chart.

The shift logic chart is displayed.

) Stateflow (chart) old_sf_car/shift_logic =lOl x|
File Edit View Simulstion Tools Format Add Patterns Help ~
/ gear_state UP Up up
!I second 1 fourth
'[%_TJI entry: gear = 2; 2 entry: gear = 4;
I' W DOWN
| S :
Bl o
 selection_state
I { during: CALC TH;
i d < down_th [speed > up_th]
[spee own_th] 1
&l
|
; [speed < up_th]
2
o |
' 2
1
after(TWAIT tick) after(TWAIT tick)
[speed == down_th] [speed == up_th] =
. {gear_state. DOWN) {gear_state.UP} =
d []
|Ready

3-11

3 Signals and Parameters

3-12

8 In the chart, click Tools > Explore.
The Model Explorer is displayed.
9 In the Model Explorer, expand sf_car.
10 Expand shift logic.
11 Expand gear_state, then select first.

12 In the rightmost pane, State first, select the Test point check box. This
creates a test point for the first state.

13 Click Apply.

14 Build and download the sf_car target application to the target PC.

You can now view the states with xPC Target Explorer or the MATLAB
interface.

Monitoring Stateflow States with xPC Target Explorer

This topic assumes that you have already set Stateflow states as test points
(see “Monitoring Stateflow States” on page 3-10 if you have not).

1 If the xPC Target Explorer is not yet started, start it now and connect it to
the target PC that has the downloaded sf_car target application.

2 To view the test point in the xPC Target Explorer, expand the
Model Hierarchy node and navigate to shift_logic. The test point
gear_state.first appears like any other signal in the hierarchy, as
follows:

Monitoring Signals

= TargetPC1
Configuration
E| ----- B File System

- H8 POl Devices

: zf_car

= Modsl Hierarchy
------ *2 Engine
------ #2. Threshold Calculation
------ P2 Usger Inputs

------ 2| Wehicle

------ P tranzmizsion

2] shift_logic

=y shift_logic
OS] oo state first
ferE shift_logic/pT

3 Choose the state as you do a signal to monitor.

Monitoring Stateflow States with the MATLAB Interface

This topic assumes that you have already set Stateflow states as test points
(see “Monitoring Stateflow States” on page 3-10 if you have not).

1 To get a list of signals in the MATLAB Command Window, type
tg=xpc
2 To display the signals in the target application, type either
set(tg, 'ShowSignals', 'On'); tg
or

tg.ShowSignals="'0On"'

The latter causes the MATLAB window to display a list of the target object
properties for the available signals.

3-13

3 Signals and Parameters

3-14

For Stateflow states that you have set as test points, the state appears in
the BLOCK NAME column like any signal. For example, if you set a test point
for the first state of gear_state in the shift logic chart of the sf_car
model, the state of interest is first. This state appears as follows in the
list of signals in the MATLAB interface:

shift_logic:gear_state.first

shift_logic is the path to the Stateflow chart and gear_state.first is
the path to the specific state.

Signal Tracing

Signal Tracing

In this section...

“Introduction” on page 3-15

“Signal Tracing with xPC Target Explorer” on page 3-15
“Signal Tracing with the MATLAB Interface” on page 3-39
“Signal Tracing with xPC Target Scope Blocks” on page 3-48
“Signal Tracing with Simulink External Mode” on page 3-50
“Signal Tracing with a Web Browser” on page 3-54

Introduction

Signal tracing is the process of acquiring and visualizing signals while
running a target application. In its most basic sense, allows you to acquire
signal data and visualize it on the target PC or upload the signal data and
visualize it on the host PC while the target application is running.

Signal tracing differs from signal logging. With signal logging you can only
look at signals after a run is finished and the log of the entire run is available.
For information on signal logging, see “Signal Logging” on page 3-56.

Note xPC Target Explorer works with multidimensional signals in
column-major format.

Signal Tracing with xPC Target Explorer

The procedures in this topic use the model xpcosc.mdl as an example, and
assume you have created, downloaded, and started the target application
on the target PC.

® “Creating Scopes” on page 3-16

® “Adding Signals to Scopes” on page 3-23

® “Stopping Scopes” on page 3-27

3-15

3 Signals and Parameters

3-16

e “Software Triggering Scopes” on page 3-28
e “Configuring the Host Scope Viewer” on page 3-30

® “Acquiring Signal Data into Multiple, Dynamically Named Files on the
Target PC” on page 3-30

® “Copying Files to the Host PC” on page 3-34

¢ “Exporting Data from File Scopes to MATLAB Workspace” on page 3-35
® “Saving and Reloading xPC Target Application Sessions” on page 3-37

e “Deleting Files from the Target PC” on page 3-39

You can add or remove signals from target or host scopes while the scope 1s

either stopped or running. For file scopes, you must stop the scope first before
adding or removing signals.

Creating Scopes

1 In xPC Target Explorer, ensure that your xpcosc application is still
running.

2 To get the list of signals in the target application, expand the Model
Hierarchy node under the target application.

Signal Tracing

The model hierarchy expands to show the elements in the Simulink model.

E

E{% TargetPC1
s Configuration
------ = File System

- E§ PCI devices

MPCOSC

~£= |ntegrator
- |ntegrator]
~£= Signal Generator

][a %PC Scopes

3 To get the list of scope types you can have in the target application, expand

the xPC Scopes node below the application node.

The xPC Scopes node expands to show the possible scope types a target
application can have.

3-17

3 Signals and Parameters

= @
- Model Hierarchy

....... ~= Gain

....... ~+= Gainl

....... = Gan?

------- ~= |ntegrator

....... ~= Inteqgrataorl

------- ~= Signal Generatar
------- ~= Sum

= . wPC Scopes

........ Host Scope|z]
------- Target Scope(z)
-------- File Scope(z)

4 To create a scope to display on the target PC, right-click the Target Scopes
node under the xPC Scopes node.

A context menu appears. This lists the actions you can perform on target
PC scopes. For example, within the current context, you can create a
target PC scope.

(=L #FL Scopes J ‘

-------- Host Scope(z)

- T_arg Add Target Scope
) File %
) o Lelete all

5 Select Add Target Scope.

A scope node appears under Target Scopes. In this example, the new
scope is labeled Scope 1.

3-18

Signal Tracing

= #PC Scopes

- % Hozt Scope|s]

= T arget Scopez]

- @ chpej] Hew SCGPE uf i}‘Pe iurgEi
. I% File Scope|s)

You can add other scopes, including those of type host and file. Note, you
can add as many file and host scopes as you want. as long as your target
PC resources can support them.

6 To create a scope to be displayed on the host PC, right-click the Host
Scopes node under the xPC Scopes node.

A context menu appears. This lists the actions you can perform on host PC
scopes. For example, within the current context, you can create a host
PC scope.

B-- L@ #PC Scopes I | |
........ alualtsleel; fdd Host Scope
----- Target Scope -
- File Scopels) Yiew Scopes
argetPL2 Delete Al

7 Select Add Host Scope.

A scope node appears under Host Scopes. In this example, the new scope
1s labeled as Scope 2.

8 To visualize the host scope on the host PC, right-click Host Scopes from
the xPC Scopes node.

A drop-down list appears.

B L@ wPC Scopes | | |

arqetPC2

Host Smom-r=1

Target S¢
File Scop

Delete Al

'-:-P'r..' Sen fdd Host Scope

3-19

3 Signals and Parameters

9 Select View Scopes.

The xPC Target Host Scope Viewer window appears. Note that the signals
you add to the scope will appear at the top right of the viewer.

) xPC Target Host Scope Yiewer: TargetPC1 - |EI|1|
k-

File Edit View Insert Tools Deskfop ‘Window Help

NG HS KRN EL- B0 e

10 To list the properties of the scope object Scope 2, click the xPC Target
Explorer tab to return to that window, and left-click Scope 2. (Note that
you can configure the docking view using the MATLAB docking feature.)

The scope properties are shown in the rightmost pane.

3-20

Signal Tracing

11 To create a scope to acquire signal data into a file on the target PC file
system, right-click the File Scopes node under the xPC Scopes node.
Select Add File Scope.

A scope node appears under File Scopes. In this example, the new scope
1s labeled Scope 3.

& Lj ¥pCOEC
2 ﬁ kodel Higrarchy
= wPC Scopes
E| % Hu:ust Scope(z]
......... chpe 2
El ----- @ TargetScan[S]
e @ Scope 1

o I File Scop
e TargetPC2
S g [relete all

By default, the software creates a file in the target PC C:\ folder. The
name of the file typically consists of the scope object name, Scopeld, and
the beginning letters of the first signal added to the scope.

3-21

3 Signals and Parameters

3-22

12 If you want to specify a different folder or filename, select the scope.

The scope property pane is displayed. In the File name field, enter the
full pathname for the file. Note that the current folder for the target PC
appears at the top of the pane.

Property I Walue
Target name: TargetPCl
Application name: ¥pCOsc

10 3

Type: File
Status: |nterrupted
Start tirne;

Murnber of zamples: 250

D ecimation: 1

Mumber of Pre/FPost Sa.. 0

Trigger miode: FreeRun
Trigger level:]

Trigger zlope: Either
Trigger scope: 3

Trigger zample: i

File name: C:hec1SigGen.dat
FAT Mode: Lazy
Wwirite Size: 12

Auto Restart: off

Auto File Increment: off

b 2 \Write File Size: B36ET0912

— Scope data
Mumber of samples: |2ED
Decimation: |-|

Murnber of pre/post samples:

|0
Trigger mode: IFreeHun j
— Signal triggering

Trigger lewvel: ID

Trigger slope: I Efithn j

— Scope tnggering

Trigger scope: |3

Trigger sample: |D

— File zettings
File: narne: |I::'\$|:‘| SigGen.dat
[FAT] entry mode: ILaZ_'r' j
Wiite size: |51 2

[~ Enable auto restart

[~ Enable file auto increnment

ax file size: R3IEE70912

Signal Tracing

Your next task is to add signals to the scopes. The following procedure
assumes that you have added scopes to the target PC and host PC.

Adding Signals to Scopes
This topic describes how to add signals using the xPC Target Explorer Add
to Scopes command. If a scope does not exist, you can drag a signal to a

Host Scope, Target Scope, or File Scope icon to create a scope of that type in
xPC Target Explorer.

1 In the xPC Target Explorer window, add signals to the target PC scope,
Scope 1. For example, to add signals Integrator1 and Signal Generator,
right-click each signal and select Add to Scopes. From the Add to
Scopes list, select Scope 1. (Note that you can also drag the signal to the
scope to add the signal to that scope.)

The Scope 1 node is shown with a plus sign.
- L@ %PC Scopes

------ Host Scopels)

B Target Scope(s)

----- @ Scope: 1

------ % File Scope(s)

2 Expand the Scope 1 node.

The Scope 1 signals are displayed.
B wPC Scopes

------ Host Scope|z)

SR Target Scopefs]

I = @ Scope: 1

te2 Sighal Generatar

- Integrator]
------ & File Scopels)

If one of the signals has been labeled. you can hover over the signal to
display the signal label. For example,

3-23

3 Signals and Parameters

o E S|gna|GE gratar
B e '
wY File Scopels)

3 Start the scope. For example, to start Scope 1, right-click it and select
Start.

= L@ *PC Scopes
EI % HnstScnpe[s]
......... [Soope: 2
El @ TargetSDDDE[S]

Delete

3-24

Signal Tracing

The target screen plots the signals after collecting each data package.
During this time, you can observe the behavior of the signals while the

scope 1s running.

<) Real-Time ®PC Target Spy

HPCOSC
S9MB

RT. single
Tt ¥y tet
9999

8. uee25
8.873e—0086
s topped

Lignal Generator
Integratorl

1., se to state ' Interrupted’
TET: BEAEAE at time @.600873508
TET: BEAE13 at time B.8167358

: execution started (sample time:

1., set to state ' Interrupted’

! execution stopped at 19.818250

1, set to state ‘Interrupted’
TET: BE8EAE at time B@.082250
BEEE14 at time B.8065808

=10] x|

B.8088258)>

4 Add signals to the host PC scope. For example, to add signals Integratori
and Signal Generator, right-click each signal and select Add to Scopes.
From the Add to Scopes list, select Scope 2. (Note that you can also drag
a signal from one scope to another to add that signal to another scope.)

The Scope 2 node is shown with a plus sign.

5 Expand the Scope 2 node.

The Scope 2 signals are displayed.

3-25

3 Signals and Parameters

= %PC Scopes
= '% Hozt Scope(s]
= % Scope: 2
-~ Signal Generatar
e Integratorl

6 Start the scope. For example, to start the scope Scope 2, right-click Scope
2 in the Host Scopes node of the xPC Target Explorer and select Start.

The xPC Target Host Scope Viewer window plots the signals after collecting
each data package. During this time, you can observe the behavior of the
signals while the scope is running.

<) ®PC Target Host Scope Yiewer: TargetPC1

File Edit View Insert Tools Desktop ‘Window Help

h RO L-|2|0E|n D

=10l x|

A5 d 2

3-26

Signal Tracing

7 Add signals to the scope of type file. For example, to add signals
Integratori and Signal Generator, right-click each signal and select
Add to Scopes. From the Add to Scopes list, select Scope 3. (Note that
you can also drag a signal from one scope to another to add that signal to
another scope.)

The Scope 3 node is shown with a plus sign.
8 Expand the Scope 3 node.

The Scope 3 signals are displayed.

9 To specify a filename for the data file, select the scope of type file. In
the right pane, enter a name in the Filename parameter. While in the
parameter field, press Enter to save the filename.

Note that there is no name initially assigned. If you do not specify a
filename, then after you start the scope, the software assigns a name for
the target PC file to acquire the signal data. This name typically consists
of the scope object name, Scopeld, and the beginning letters of the first
signal added to the scope.

10 Start the scope. For example, to start the scope Scope 3, right-click Scope
3 in the File Scopes node of the xPC Target Explorer and select Start.

For file scopes, the xPC Target software saves data to a file on the target
PC flash disk.

Your next task is to stop the scopes. The following procedure assumes that
you have started scopes.

Stopping Scopes

1 Stop the scopes. For example, to stop Scope 1, right-click it and select
Stop.

3-27

3 Signals and Parameters

3-28

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message:

Scope: 1, set to state 'interrupted'

Stop the target application. For example, to stop the target application
xpcosc, right-click xpcosc and select Stop.

The target application on the target PC stops running, and the target PC
displays the following messages:

minimal TET: 0.0000006 at time 0.001250
maximal TET: 0.0000013 at time 75.405500

Note that if you stop the target application before stopping the scope, the
scope stops, too.

If you have file scopes, you can copy the file that contains the signal data from
the target PC to the host PC. See “Copying Files to the Host PC” on page 3-34.

Software Triggering Scopes

You can set up a scope such that only a user can trigger the scope. This
section assumes that you have added a scope to your target application (see
“Creating Scopes” on page 3-16) and that you have added signals to that scope
(see “Adding Signals to Scopes” on page 3-23).

1 In the xPC Target Explorer window, select the scope that you want to

trigger by software. For example, select Scope 1.

The properties pane for that scope is displayed.

Signal Tracing

2 From the Trigger mode list, select Software. Click Apply.

)} ®PC Target Explorer i m] 4
File Target Application Tools Help u
+
XE|» =« | B W
| *PC Target Hierarchy I TargetPCl Scope: 1
5G9 TargetPC1 - -
= gl:onfiguration _I Froperty | Yalue — Scope data
7 File System Targ_et name: TargetPC1 Mumber of samples: >0
) Application name: #OCOSC
PCI Devices D 1 -
wpeose Tope: Target Decimation: |1
ﬁ Madel Higranchy Status: Interupted
........ =1 Gain Start K Mumber of pre/post zamples:
T Gainl Mumber of samples: 250 |u
1 Gairg Decimation: 1
H MHumber of Pre/Post Sa.. 0
T Integrater Trigger mode: FreeRun B
........ =1 In.tegrator'l Trigger level: Trigger mode: IFleeHun
= S|g_naIGeneral Tr?ggel slope: Either — Signal triggering
Gain Trigger scope: 1 :
Gainl Trigger sarmple: i] Trigger level: ID
Gain? Display Mode: Redraw (Graphicall
Irtegrator ¥ Limits: oo Trigger slope: IEither
Grid: ok
Integratorl

Bl

2l

Signal Generat
Sum

I':'IE@ #PC Scopes

B ‘% Host Scope(s)
== % Scope: 2

% File S cope(s)

(SRS % Scope: 3
il

2l

— Scope triggering

Trigger scope:

|1
Trigger sample: ID

—Scope display
Dizgplay mode:

|F| edraw [Graphical)

“-awiz lirnitz: [wrinpmax)
[tay

IS Erwshla Eed

-

| Refresh Enabled

3 Start the scope and target application.

4 Observe that the scope has no plotted data.

5 Right-click the scope to be triggered. For example, select Scope 1.

6 Select Trigger.

7 Observe that the scope now has plotted data.

3-29

3 Signals and Parameters

3-30

Configuring the Host Scope Viewer

You can customize your host scope viewer. This section assumes that

you have added a host scope to your target application, started the host
scope viewer, and added signals Integrator1 and Signal Generator (see
“Creating Scopes” on page 3-16 and “Adding Signals to Scopes” on page 3-23).
These viewer settings are per scope.

In the xPC Target Host Scope Viewer, right-click anywhere in the axis area of
the viewer.

A context menu is displayed. This context menu contains options for the
following:

® View Mode — Select Graphical for a graphical display of the data. Select
Numerical for a numeric representation of the data.

® Legends — Select and deselect this option to toggle the display of the
signals legend in the top right of the viewer.

e Grid — Select and deselect this option to toggle the display of grid lines in
the viewer.

® Y-Axis — Enter the desired values. In the Enter Y maximum limit and
Enter Y minimum limit text boxes, enter the range for the y-axis in the
Scope window.

® Export — Select the data to export. Select Export Variable Names
to export scope data names. In the Data Variable Name and Time
Variable Name text boxes, enter the names of the MATLAB variables to
save data from a trace. Click the OK button. The default name for the data
variable is application_name_scn_data, and the default name for the time
variable is application_name_scn_time where n is the scope number.
Select Export Scope Data to export scope data to the MATLAB interface.

Acquiring Signal Data into Multiple, Dynamically Named Files
on the Target PC

You can acquire signal data into multiple, dynamically named files on the
target PC. For example, you can acquire data into multiple files to examine
one file while the scope continues to acquire data into other files. To acquire
data in multiple files, add a scope of type file to the application. After you
build an application and download it to the target PC, you can add a scope

Signal Tracing

of type file to that application. You can then configure that scope to log
signal data to multiple files. This section assumes that you have added a
scope to your target application (see “Creating Scopes” on page 3-16). It also
assumes that you have added signals to that scope (see “Adding Signals to
Scopes” on page 3-23).

1 In xPC Target Explorer, expand the target PC node associated with the
target PC file system you want to access. For example, expand TargetPC1.

2 Under TargetPC1, expand the target application node and navigate to the
File Scope(s) node.

3 Right-click this node and add a file scope.

4 Add one or more scopes to that file scope. For example, add Integratori
and Signal Generator to the scope.

5 Right-click the scope you just added (for example, Scope:1). The scope
property pane for this scope is displayed.

3-31

3 Signals and Parameters

Property | value - Scope data

Target name: TargetPC1 Murnber of zamples: |25EI
Application name; HPCOEC

10 1 o

Type: File Decimation: |1
Status: | nterrupted

Start Hime: Humber of pre/post samples:
Mumber of samples: 250 ID

Decimation: 1

MHumber of Pre/Post Sa.. 0

Trigger mode: FreeR un :)

Trigger level: 0 Trigger mode: IF'EEH"‘” j
Trigger zlope: Either — Signal tiggering

Trigger zcope: 1

Trigger zample: i Trigger level: ||j

File name: unzet

FAT Mode: Lazy Trigger slope: g

Wiite Size: 512 goet sbpe: [Eiher I
Auta Restart: off

Auto File Increment; off — Scope tnggering

ax Wwirite File Size: B3BET0912

Trigger zcope: |-|

Trigger zample; ID

— File zettings
File name: Iunset
[FAT] entry mode: ILaZ_'r' j
Write size: |5-| o

[~ Enable auto restart

[~ Ehable file auta increment

Max file size: |53EB?‘DS1 2

6 To enable the file scope to create multiple log files with the same name
pattern, in the File name box, enter a name like file <%>.dat.

This sequence directs the software to create up to nine log files, file 1.dat
to file 9.dat, on the target PC file system.

3-32

Signal Tracing

7 Select the Enable auto restart check box. The Enable file auto
increment check box is enabled.

8 Select the Enable file auto increment check box.

9 In the Max file size box, enter a value to limit the size of the signal log
files. For example, to limit each log file size to 4096 bytes, enter 4096.

This value must be a multiple of the Write size value.

10 Click Apply. The saved values appear as follows:

—File zettings
File narne: | C:file_<%>.dat
[FAT] entry mode: ILEIZ}' j
wirite size: 512

[Enable auto restart

v Enable file auto increment

b az file size: |4|:|'_E|E

11 Right-click the new file scope and select Start.

12 Start the associated target application.

The software creates a log file named file_1.dat and writes data to that
file. When the size of file 1.dat reaches 4096 bytes (value of Max file
size), the software closes the file. It then creates file 2.dat for writing
until its size reaches 4096 bytes. The software repeats this sequence until it
fills the last log file, file 9.dat. If the target application continues to run
and collect data after file 9.dat, the software reopens file 1.dat and
continues to log data, overwriting the existing contents. It cycles through the
other log files sequentially.

3-33

3 Signals and Parameters

3-34

You can enable the creation of up to 99999999 files (<%%%%%%%%>.dat). The
length of a file name, including the specifier, cannot exceed eight characters.
See the Filename description in the get (target application object) for
a details about this specifier.

Copying Files to the Host PC

From xPC Target Explorer, you can download target PC files from the target
PC to the host PC.

1 In xPC Target Explorer, expand the target PC node associated with the
target PC file system you want to access. For example, expand TargetPC1.

2 Under TargetPC1, expand the File System node.

Nodes representing the drives on the target PC are displayed.

RIEE T argetPC1
e Configuration

- & Communication
- Setings

e 8 Appearance
B g File System

..... e |ozal disk o
...... HE POl Devices

...... [#] =poosc

3 Expand the node of the drive that contains the file you want. For example,
local disk: c:\.

4 Select the folder that contains the file you want. For example, select the
node labeled local disk: c:\.

The contents of that folder are displayed in the right pane.

5 In the right pane, right-click the file you want to copy to the host PC. For
example, right-click SC3SIGNA.DAT.

A context-sensitive menu is displayed.

Signal Tracing

6 Select Save to Host PC.

) ®PC Target Explorer

File Target Application Tools Help

=101

g X 8| = |E|W

‘xPC Target Hierarchy ITargetF‘Cl coh

EI@ Host PC Root - | Size

| Date

% Compiler(z) Car
[]@ DLM[S]Z C:hawii
[_] TargetPC1

= % Canfiguration
e 62 Communic
e (8 Settings
(- Appearan
=B File System
- foppy &
g [0zl dizk
- EE PCl Devices

| “pcosc

- ModelHie
----- %PC Secop

.- 1E T ametPr? ~
« I 3 1] |

g5 kB

M

7432007

| Refresh Enabled

A browser dialog box is displayed.

7 Choose the folder to contain the signal data file. If you want, you can also
save the file under a different name or create a new folder for the file.

xPC Target Explorer copies the contents of the selected file, SC1INTEG.DAT

for example, to the selected folder.

You can examine the contents of the signal data file. See “Retrieving a File
from the Target PC to the Host PC” on page 9-7 in Chapter 9, “Working with

Target PC Files and File Systems”.

Exporting Data from File Scopes to MATLAB Workspace

From xPC Target Explorer, you can export data from target PC files from the
target PC to the MATLAB workspace. This topic assumes that you have

3-35

3 Signals and Parameters

3-36

created a scope of type file that contains signal data (see “Adding Signals to
Scopes” on page 3-23).

1 In xPC Target Explorer, expand the target PC node associated with the
target PC file system you want to access. For example, expand TargetPC1.

2 Under TargetPC1, find the target application and ensure that it is not
running.

3 Under TargetPC1, expand the xPC Scopes node.
All the scopes you have added are displayed.

4 Right-click on the scope of type file for which you want to export the signal
data and select Export to workspace.

% File Scopels) ” |

= I% Scop

The Export to workspace dialog box is displayed.

) g i1

Yariakle name
hew_data

Ok Cancel |

5 Enter a variable name for the workspace data. For example, enter
sig_integ. Click OK.

In the MATLAB desktop, the Workspace pane displays the new variable
name.

Signal Tracing

B o = R B
Marme £

Lat] ans
sig_integ

You can examine and otherwise manipulate the data. You can also plot the
data with plot(sig_integ.data). This is an alternate method to “Retrieving
the Contents of a File from the Target PC to the Host PC” on page 9-11 in
Chapter 9, “Working with Target PC Files and File Systems”.

Saving and Reloading xPC Target Application Sessions

Once you have a set of application configurations, you can save the xPC
Target application session, including scope and target PC settings, to a
standard MATLAB MAT-file on the host PC. You can then later reload this
saved session to another xPC Target application session. This feature lets you
save and restore xPC Target application sessions so that you do not have to
reconfigure target PC and target application settings each time you start
xPC Target Explorer.

To save a session,
1 Ensure that xPC Target Explorer is connected to a target PC.
2 In xPC Target Explorer, load a target application on the target PC.

3 In xPC Target Explorer, right-click the target PC you are interested in and
select Save Session. For example,

3-37

3 Signals and Parameters

==L Hoszt PC Root ||| Loaded App
- % Cornpiler(s) Cor bode

..... [DLM[s): C:vwwn Logging

- Ta Conneck ime

L—_|
% Disconnect le T'm_E
: ge TE
Remowe - .
: tion Tit
@ Hename t Marme
E'
Sek s Defaulk bcted:
| Expark Environment. ..
Impork Environment. ..

Load Session, ..

= T T

A Save Target Session as dialog box is displayed.

4 As necessary, browse to the desired folder and enter a unique name. For
example, xpcsessioni.mat.

To restore a session,

1 Ensure that xPC Target Explorer is connected to a target PC.

2 In xPC Target Explorer, load a target application on the target PC. This
target application must be the same target application for which the
session was saved.

3 In xPC Target Explorer, right-click the target PC you are interested in and
select Load Session. For example,

3-38

Signal Tracing

==L Hoszt PC Root ||| Loaded Ap
- % Compilerz] Cor bode
..... @ DLM[): T Logging

=

Canneck]‘_

. Ir
Disconneck

Tl

Remove L7
Remnanme ar
Set Az Default i
Export Environmentk. ..
Import Environment. ..

Saye Session,..

A Load Target Session as dialog box is displayed.

4 As necessary, browse to the desired folder and select the session you are
interested in. For example, xpcsessioni.mat.

A dialog box is displayed asking you to confirm that you want to load a
new session.

5 Click Yes.

xPC Target Explorer loads the saved settings.

Deleting Files from the Target PC

From xPC Target Explorer on the host PC, you can delete the scope data
file on the target PC file system. Use the same procedure as described in
“Copying Files to the Host PC” on page 3-34, but select Delete instead of
Save to Host PC. xPC Target Explorer removes the selected file from the
target PC file system.

Signal Tracing with the MATLAB Interface

Creating a scope object allows you to select and view signals using the scope
methods. This section describes how to trace signals using xPC Target

3-39

3 Signals and Parameters

3-40

functions instead of using the xPC Target graphical user interface. This
procedure assumes that you have assigned tg to the appropriate target PC.

After you create and download the target application, you can view output
signals.

Using the MATLAB interface, you can trace signals with

® Host or target scopes (see “Signal Tracing with the MATLAB Interface and
Target Scopes” on page 3-40 for a description of with target scopes)

® File scopes (see “Signal Tracing with the MATLAB Interface and File
Scopes” on page 3-44)

You must stop the scope before adding or removing signals from the scope.

Signal Tracing with the MATLAB Interface and Target Scopes

This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have built the target application for this model. It describes how
to trace signals with target scopes.

1 Start running your target application. Type any of
+tg
or
tg.start
or
start(tg)
The target PC displays the following message.
System: execution started (sample time: 0.0000250)
2 To get a list of signals, type either
set(tg, 'ShowSignals', 'on')

or

Signal Tracing

tg.ShowSignals="'on'

The MATLAB window displays a list of the target object properties for
the available signals. For example, the signals for the model xpcosc.mdl
are as follows:

ShowSignals = on

Signals = INDEX VALUE BLOCK NAME LABEL
0 0.000000 Integratori
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

For more information, see “Signal Monitoring with the MATLAB Interface”
on page 3-9.

3 Create a scope to be displayed on the target PC. For example, to create a
scope with an identifier of 1 and a scope object name of sc1, type

sc1=tg.addscope('target', 1)
or
sci1=addscope(tg, 'target', 1)

4 List the properties of the scope object. For example, to list the properties of
the scope object sc1, type

sci

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties Time and Data are not accessible with a scope
of type target.

XPC Scope Object

Application = Xpcosc
Scopeld =1

Status = Interrupted
Type = Target

3-41

3 Signals and Parameters

NumSamples = 250
NumPrePostSamples =0

Decimation =1

TriggerMode = FreeRun
TriggerSignal = -1

TriggerLevel = 0.000000
TriggerSlope = Either
TriggerScope =1

TriggerSample = -1

Mode = Redraw (Graphical)
YLimit = Auto

Grid = 0On

Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integratori and
Signal Generator, type

sc1.addsignal ([0,1])
or
addsignal(sc1,[0,1])
The target PC displays the following messages.

Scope: 1, signal 0 added
Scope: 1, signal 1 added

After you add signals to a scope object, the signals are not shown on the
target screen until you start the scope.

6 Start the scope. For example, to start the scope sc1, type either
+sci
or
sci.start
or

start(sc1)

3-42

Signal Tracing

The target screen plots the signals after collecting each data package.
During this time, you can observe the behavior of the signals while the
scope 1s running.

7 Stop the scope. Type either

-sci

or

sci.stop

or

stop(sci)

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message.

Scope: 1, set to state 'interrupted'
8 Stop the target application. In the MATLAB window, type either
-tg
or
tg.stop
or

stop(tg)

The target application on the target PC stops running, and the target PC
displays the following messages.

minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

3-43

3 Signals and Parameters

Signal Tracing with the MATLAB Interface and File Scopes

This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have built the target application for this model. It also assumes
that you have a serial communication connection. This topic describes how to
trace signals with file scopes .

Note The signal data file can quickly increase in size. You should examine
the file size between runs to gauge the growth rate of the file. If the signal
data file grows beyond the available space on the disk, the signal data might
be corrupted.

1 Create an xPC Target application that works with file scopes. Type
tg=xpctarget.xpc('rs232', 'COM1', '115200')
2 To get a list of signals, type either
set(tg, 'ShowSignals', 'on')
or

tg.ShowSignals='on'

The MATLAB window displays a list of the target object properties for
the available signals. For example, the signals for the model xpcosc.mdl
are shown below.

ShowSignals = on

Signals = INDEX VALUE BLOCK NAME LABEL
0 0.000000 Integratort
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

For more information, see “Signal Monitoring with the MATLAB Interface”
on page 3-9.

3-44

Signal Tracing

3 Start running your target application. Type

+tg

or
tg.start

or
start(tg)

The target PC displays the following message:
System: execution started (sample time: 0.0000250)

4 Create a scope to be displayed on the target PC. For example, to create a
scope with an identifier of 2 and a scope object name of sc2, type

sc2=tg.addscope('file', 2)
or
sc2=addscope(tg, 'file', 2)

5 List the properties of the scope object. For example, to list the properties of
the scope object sc2, type

sc2

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties Time and Data are not accessible with a scope
of type target.

XPC Scope Object

Application = Xpcosc
Scopeld =2

Status = Interrupted
Type = File
NumSamples = 250
NumPrePostSamples =0
Decimation =1
TriggerMode = FreeRun

3-45

3 Signals and Parameters

TriggerScope =2
TriggerSample =0
TriggerSignal = -1
TriggerLevel = 0.000000
TriggerSlope = Either
ShowSignals = off
FileName = unset
Mode = Lazy
WriteSize = 512
AutoRestart = off
DynamicFileName = off
MaxWriteFileSize = 536870912

Note that there is no name initially assigned to FileName. After you start
the scope, xPC Target assigns a name for the file to acquire the signal data.
This name typically consists of the scope object name, Scopeld, and the
beginning letters of the first signal added to the scope.

6 Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

sc2.addsignal ([4,5])
or
addsignal(sc2,[4,5])
The target PC displays the following messages.

Scope: 2, signal 4 added
Scope: 2, signal 5 added

After you add signals to a scope object, the scope of type file does not
acquire signals until you start the scope.

7 Start the scope. For example, to start the scope sc2, type
+sc2
or

sc2.start

3-46

Signal Tracing

or
start(sc2)

The MATLAB window displays a list of the scope object properties. Notice
that FileName is assigned a default filename to contain the signal data for
the scope of type file. This name typically consists of the scope object
name, Scopeld, and the beginning letters of the first signal added to the
scope.

Application = Xpcosc
Scopeld =2
Status = Pre-Acquiring
Type = File
NumSamples = 250
NumPrePostSamples =0
Decimation =1
TriggerMode = FreeRun
TriggerScope =2
TriggerSample =0
TriggerSignal =4
TriggerLevel = 0.000000
TriggerSlope = Either
ShowSignals = on
Signals = 4 : Integratori

5 : Signal Generator

FileName = c:\sc7Integ.dat
Mode = Lazy
WriteSize = 512
AutoRestart = off
DynamicFileName = off
MaxWriteFileSize = 536870912

8 Stop the scope. Type
-sc2
or
sc2.stop

or

3-47

3 Signals and Parameters

stop(sc2)

9 Stop the target application. In the MATLAB window, type

-tg

or

tg.stop

or

stop(tg)

The target application on the target PC stops running, and the target PC
displays messages similar to the following.

minimal TET: 0.00006 at time 0.004250
maximal TET: 0.000037 at time 14.255250

To access the contents of the signal data file that the xPC Target scope of type
file creates, use the xPC Target file system object (xpctarget.fs) from the
host PC MATLAB window. To view or examine the signal data, you can use
the readxpcfile utility with the plot function. For further details on the
xpctarget.fs file system object and the readxpcfile utility, see Chapter 9,
“Working with Target PC Files and File Systems”.

Signal Tracing with xPC Target Scope Blocks

Use host scopes to log signal data triggered by an event while your target
application is running. This topic describes how to use the three scope block

types.

Note xPC Target supports ten target scopes. It can support an infinite
number of host scopes, as long as the target PC resources can support them.
It can support eight file scopes. Each scope of type target can contain up to
10 signals. Each scope of type file or host can contain an infinite number of
signals, as long as the target PC resources can support them.

3-48

Signal Tracing

Note If your model has the output of a Mux block connected to the input of
an xPC Target Scope block, the signal might not be observable. To ensure that
you can observe the signal, add a unity gain block (a Gain block with a gain of
1) between the Mux block and the xPC Target Scope block.

Using xPC Target Scope Blocks from Referenced Models

You cannot add any type of xPC Target scope to a referenced model. Doing
so causes an error. You can add only an xPC Target scope to the topmost
model. If you want to log signals from referenced models, you can do so with
the logging mechanism in xPC Target Explorer or with the xPC Target scope
objects.

Scope of Type Host

For a scope of type host, the scope acquires the first N samples into a buffer.
You can retrieve this buffer into the scope object property sc.Data. The scope
then stops and waits for you to manually restart the scope.

The number of samples N to log after triggering an event is equal to the value
you entered in the Number of Samples parameter.

Select the type of event in the Block Parameters: Scope (xPC Target) dialog
box by setting Trigger Mode to Signal Triggering, Software Triggering,
or Scope Triggering.

Scope of Type Target

For a scope of type target, logged data (sc.Data and sc.Time) is not
accessible over the command-line interface on the host PC. This is because
the scope object status (sc.Status) is never set to Finished. Once the scope
completes one data cycle (time to collect the number of samples), the scope
engine automatically restarts the scope.

If you create a scope object, for example, sc = getscopes(tg,1) for a scope
of type target, and then try to get the logged data by typing sc.Data, you
get an error message:

Scope # 1 is of type 'Target'! Property Data is not accessible.

3-49

3 Signals and Parameters

3-50

If you want the same data for the same signals on the host PC while the data
1s displayed on the target PC, you need to define a second scope object with
type host. Then you need to synchronize the acquisitions of the two scope
objects by setting TriggerMode for the second scope to 'Scope'.

Scope of Type File

For a scope of type file, the scope acquires data and writes it to the file
named in the FileName parameter in blocks of size WriteSize. The scope
acquires the first N samples into the memory buffer. This memory buffer is
of length Number of Samples. The memory buffer writes data to the file
in WriteSize chunks. If the AutoRestart check box is selected, the scope
then starts over again, overwriting the memory buffer. The additional data
is appended to the end of the existing file. If the AutoRestart box is not
selected, the scope collects data only up to the number of samples, and then
stops. The number of samples N to log after triggering an event is equal to the
value you entered in the Number of Samples parameter. If you stop, then
start the scope again, the data in the file is overwritten with the new data.

Select the type of event in the Block Parameters: Scope (xPC Target) dialog
box by setting Trigger Mode to Signal Triggering, Software Triggering,
or Scope Triggering.

Signal Tracing with Simulink External Mode

You can use Simulink external mode to establish a communication channel
between your Simulink block diagram and your target application. The block
diagram becomes a graphical user interface to your target application and
Simulink scopes can acquire signal data from the target application. For each
Simulink scope, the xPC Target software adds an xPC Target scope of type
host to the system to upload signals. You can control which signals to upload
through the External Signal & Triggering dialog box (see “Signal Selection” in
the Real-Time Workshop® User’s Guide.

Note Do not use Simulink external mode while xPC Target Explorer is
running. Use only one interface or the other.

Signal Tracing

Limitations

The following are limitations of uploading xPC Target signals to Simulink
external mode:

® When setting up signal triggering (Source set to signal), you must explicitly
specify the element number of the signal in the Trigger signal:Element
field. If the signal is a scalar, enter a value of 1. If the signal is a wide
signal, enter a value from 1 to 10. Do not enter Last or Any in this field
when uploading xPC Target signals to Simulink scopes.

¢ The Direction:Holdoff field has no effect for the xPC Target signal
uploading feature.

Before You Start

The procedures in this topic use the Simulink model xpcosc.mdl, which
already contains a Simulink Scope block, as an example. After you download
your target application to the target PC, you can connect your Simulink model
to the target application.

Signal Tracing with External Mode Example

This procedure assumes that you have downloaded your target application
to the target PC.

Note that this procedure edits the Simulink window External Mode Control
Panel and assumes that you are familiar with that dialog box. See “External
Mode Control Panel” in the Real-Time Workshop User’s Guide for details of
the Simulink external mode dialog box.

1 In the MATLAB window, type
Xpcosc

2 In the Simulink window, and from the Tools menu, select External Mode
Control Panel.

The External Mode Control Panel dialog box opens.
3 Click the Signal & Triggering button.

The External Signal & Triggering dialog box opens.

3-51

3 Signals and Parameters

4 Ensure that the Source parameter is set to manual.

5 Set the Mode parameter to normal. This ensures that the scope acquires
data continuously.

6 Select the Arm when connecting to target check box.

7 In the Duration box, enter the number of samples for which external mode
is to log data. The External Signal & Triggering dialog box should look
similar to the figure shown.

) ®pcosc: External Signal & Triggering =10l =]

Signal zelection

Block Path
W Scope ®poosc/icope ;l v Select &l
Clear Al |
= an
) aff
Trigger; Signal |
=]l ©oToBiack |
Trigoer
Source: Imanual = I Made: Triooer sional: Part: |1 Element: Iany
-
Coirstion; hDDD Delay: lj LI

I Anm when connecting to target Direction: Irising vI LLevel: F Huald-off: F

Rever‘tl Help I Apply I Cloze I

8 Click Apply, then Close.

9 In the Simulink window, increase the simulation stop time. For example,
enter

50

3-52

Signal Tracing

10 From the File menu, select Save As and enter a filename. For example,
enter xpc_osc6.mdl and then click OK.

11 Build and download the target application. In the Simulink window and
from the Tools menu, select Real-Time Workshop. From the Real-Time
Workshop submenu, select Build Model.

The xPC Target software downloads the target application to the default
target PC.

12 In the Simulink window, and from the Simulation menu, select External.
A check mark appears next to the menu item External, and Simulink
external mode is activated.

13 If a Scope window is not displayed for the Scope block, double-click the
Scope block.

A Scope window is displayed.

14 In the Simulink window, and from the Simulation menu, select Connect
to target.

15 From the Simulation menu, select Start Real-Time Code.

The target application begins running on the target PC and the Scope window
displays plotted data.

3-53

3 Signals and Parameters

3-54

JSscope
N R

1] 0oz 004 008 002 01 012 014 016

Tirme offzet; 204173

Signal Tracing with a Web Browser

The Web browser interface allows you to visualize data using a graphical
user interface.

After you connect a Web browser to the target PC, you can use the scopes page
to add, remove, and control scopes on the target PC:

1 In the left frame, click the Scopes button.
The browser loads the Scopes List pane into the right frame.
2 Click the Add Scope button.

A scope of type target is created and displayed on the target PC. The
Scopes pane displays a list of all the scopes present. You can add a new

Signal Tracing

scope, remove existing scopes, and control all aspects of a scope from this
page.

To create a scope of type host, use the drop-down list next to the Add
Scope button to select Host. This item is set to Target by default.

3 Click the Edit button.

The scope editing pane opens. From this pane, you can edit the properties
of any scope, and control the scope.

4 Click the Add Signals button.
The browser displays an Add New Signals list.

5 Select the check boxes next to the signal names, and then click the Apply
button.

A Remove Existing Signals list is added above the Add New Signals
list.

You do not have to stop a scope to make changes. If necessary, the Web
interface stops the scope automatically and then restarts it when the changes
are made. It does not restart the scope if the state was originally stopped.

When a host scope is stopped (Scope State is set to Interrupted) or finishes
one cycle of acquisition (Scope State is set to Finished), a button called Get
Data appears on the page. If you click this button, the scope data is retrieved
in comma-separated value (CSV) format. The signals in the scope are spread
across columns, and each row corresponds to one sample of acquisition. The
first column always corresponds to the time each sample was acquired.

Note If Scope State is set to Interrupted, the scope was stopped before it
could complete a full cycle of acquisition. Even in this case, the number of
rows in the CSV data will correspond to a full cycle. The last few rows (for
which data was not acquired) will be set to 0.

3-55

3 Signals and Parameters

Signal Logging

3-56

In this section...

“Introduction” on page 3-56
“Signal Logging with xPC Target Explorer” on page 3-56
“Signal Logging in the MATLAB Interface” on page 3-59

“Signal Logging with a Web Browser” on page 3-63

Introduction

Signal logging is the process for acquiring signal data during a real-time run,
stopping the target application, and then transferring the data to the host
PC for analysis. This is also known as real-time data streaming to the target
PC. You can plot and analyze the data, and later save it to a disk. xPC Target
signal logging samples at the base sample time. If you have a model with
multiple sample rates, add xPC Target scopes to the model to ensure that
signals are sampled at their appropriate sample rates.

Note The xPC Target software does not support logging data with decimation.

Note xPC Target Explorer works with multidimensional signals in
column-major format.

Signal Logging with xPC Target Explorer

You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

This procedure uses a model named xpc_osc4.mdl as an example and
assumes you have created a target application and downloaded it to the
target PC. The xpc_osc4.mdl is the same as xpc_osc3.md1l with the xPC
Target Scope block removed. See “xPC Target Application” in the xPC Target
Getting Started Guide.

Signal Logging

To create xpc_osc4:
1 In the MATLAB window, type
Xpc_osc3
The xpc_osc3 model opens.

2 In the Simulink window, select and delete the xPC Target Scope block
and its connecting line.

3 From the File menu, click Save as. Enter xpc_osc4 and then click Save.

You can now build and download the model (see “Building and Downloading
the Target Application” in the xPC Target Getting Started Guide).

Note To use the xPC Target Explorer for signal logging, you need to add an
Outport block to your Simulink model, and you need to activate logging on the
Data Import/Export pane in the Configuration Parameters dialog box.

1 In xPC Target Explorer, select the downloaded target application node. For
example, xpc_osc4.

The right pane displays the target application properties dialog box for
Xpc_osc4.

2 In the Logging pane, select the boxes of the signals you are interested in
logging. For example, select Output and TET. Click Apply.

3-57

3 Signals and Parameters

) ®PC Target Explorer i] 4
File Target Application Tools Help §

B X8 = |HE| W

| %PC Target Hierarchy I TargetPCl Target Application Properties

Host PC Foot Froperty I Walue - Application properties Pt
Target name: TargetPC1 Stap bime:
Application name: wpc_nscd 5 |1 0000
[E2 TargetPC1 Stap time: 10000 .
_ 4 Corfiouat || Samele tne: 000025 Sample fime: |0,00025
Toor Execution time: 0
.| CPU Owerload: none Log mode: ITime-equidistant vl l_
Minimum TET: 3333399
M axirurn TET: 1} — Logging
I aximurn logging samp... 20000
M aximum logging wraps: 0 .
. Mumber of signals: 2 I~ Time: |t0ut
: Mumber of parameters: 4
PCI D
S | Mumber of sCOpes: 1 I~ Output: ycut
#pc_oscd |
[State: |xout
[~ TET: |tet

-
« | »

| Refresh Enabled

3 Start the target application. For example, in the xPC Target Hierarchy
pane, right-click the xpc_osc4 target application, then select Start.

4 Stop the target application. For example, in the Target Hierarchy pane,
right-click the xpc_osc4 target application, then select Stop.

5 Send the selected logged data to the MATLAB workspace. In the target
application properties dialog box for xpc_osc4, go to the Logging pane and
click the Send to MATLAB Workspace button.

In the MATLAB desktop, the Workspace pane displays the logged data.

3-58

Signal Logging

Current Directory | Workspace + [}

e -] "

Mame £ |'-.-'a|ue IMin
[s] ans “rnathweorksh, ..

() tet <20000%1 dou... 8.32.
&) ty =1x1 xpctarge. ..

H yout <20000%2 dou... -1.51

You can examine and otherwise manipulate the data.

Signal Logging in the MATLAB Interface

You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

Time, states, and outputs — Logging the output signals is possible only if
you add Outport blocks to your Simulink model before the build process, and
in the Configuration Parameters Data Import/Export node, select the
Save to workspace check boxes. See “Entering Parameters for the Outport
Blocks” of the xPC Target Getting Started Guide.

Task execution time — Plotting the task execution time is possible only if
you select the Log Task Execution Time check box in the Configuration
Parameters xPC Target options tab. This check box is selected by default.
See “Adding an xPC Target Scope Block” of the xPC Target Getting Started
Guide.

All scopes copy the last N samples from the log buffer to the target object
logs (tg.TimelLog, tg.OutputLog, tg.Statelog, and tg.TETLog). The xPC
Target software calculates the number of samples N for a signal as the value
of Signal logging buffer size in doubles divided by the number of logged
signals (1 time, 1 task execution time ([TET]), outputs, states).

After you run a target application, you can plot the state and output signals.
This procedure uses the Simulink model xpc_osc3.mdl as an example, and

3-59

3 Signals and Parameters

assumes you have created and downloaded the target application for that
model. It also assumes that you have assigned tg to the appropriate target PC.

1 In the MATLAB window, type

tg=xpc

2 Type

+tg

or

tg.start

or

start(tg)

The target application starts and runs until it reaches the final time set in
the target object property tg.StopTime.

The outputs are the signals connected to Simulink Outport blocks. The
model xpcosc.mdl has just one Outport block, labeled 1, and there are two
states. This Outport block shows the signals leaving the blocks labeled
Integratorl and Signal Generator.

3 Plot the signals from the Outport block and the states. In the MATLAB
window, type

plot(tg.TimelLog,tg.Outputlog)

Values for the logs are uploaded to the host PC from the target application
on the target PC. If you want to upload part of the logs, see the target
object method getlog.

3-60

Signal Logging

The plot shown below is the result of a real-time execution. To compare this
plot with a plot for a non-real-time simulation, see “Simulating the Model
from MATLAB” of the xPC Target Getting Started Guide.

ey il

File Edit VYiew Insert Tools Desktop ‘Window Help a

Dode | |RAODDEL-T|0EBE 8D

1.8+ .

0.5 H .

naH .

4 In the MATLAB window, type

plot(tg.TimelLog,tg.TETLoQ)

Values for the task execution time (TET) log are uploaded to the host PC
from the target PC. If you want to upload part of the logs, see the target
object method getlog.

3-61

3 Signals and Parameters

The plot shown below is the result of a real-time run.

e — ~lolx|

File Edit VYiew Insert Tools Desktop ‘Window Help a

Uode | h|RAMBDEL- 2| 0E 83

w 10°
15 T T T T T

141 .

1.3 .

1.2 .

1.1 .

DB | | 1 1 |
14 16 17 18 19 20 21

The TET is the time to calculate the signal values for the model during
each sample interval. If you have subsystems that run only under certain
circumstances, plotting the TET would show when subsystems were
executed and the additional CPU time required for those executions.

5 In the MATLAB window, type either

tg.AvgTET

or

get(tg, 'AvgTET')

3-62

Signal Logging

The MATLAB interface displays the following information about the
average task execution time.

ans =
5.7528e-006

The percentage of CPU performance is the average TET divided by the
sample time.

Note that each outport has an associated column vector in tg.OutputLog.
You can access the data that corresponds to a particular outport by specifying
the column vector for that outport. For example, to access the data that
corresponds to Outport 2, use tg.outputlog(:,2).

Signal Logging with a Web Browser

When you stop the model execution, another section of the Web browser
interface appears that enables you to download logging data. This data is
in comma-separated value (CSV) format. This format can be read by most
spreadsheet programs and also by the MATLAB interface using the csvread
function.

This section of the Web browser interface appears only if you have enabled
data logging, and buttons appear only for those logs (states, output, and TET)
that are enabled. If time logging is enabled, the first column of the CSV file
1s the time at which data (states, output, and TET values) was acquired. If
time logging is not enabled, only the data is in the CSV file, without time
information.

You analyze and plot the outputs and states of your target application to
observe the behavior of your model, or to determine the behavior when you
vary the input signals.

Time, states, and outputs — Logging the output signals is possible only if you
add Outport blocks to your Simulink model before the build process, and

in the Configuration Parameters Data Import/Export node, select the
Save to workspace check boxes. See “Entering Parameters for the Outport
Blocks” in xPC Target Getting Started Guide.

3-63

3 Signals and Parameters

Task execution time — Logging the task execution time is possible only if
you select the Log Task Execution Time check box in the Configuration
Parameters xPC Target options node. This check box is selected by
default. See “Entering Parameters for an xPC Target Scope Block” in xPC
Target Getting Started Guide.

3-64

Parameter Tuning and Inlining Parameters

Parameter Tuning and Inlining Parameters

In this section...

“Introduction” on page 3-65

“Parameter Tuning with xPC Target Explorer” on page 3-66
“Parameter Tuning with the MATLAB Interface” on page 3-69
“Parameter Tuning with Simulink External Mode” on page 3-72
“Parameter Tuning with a Web Browser” on page 3-75

“Saving and Reloading Application Parameters with the MATLAB
Interface” on page 3-75

“Inlined Parameters” on page 3-78

Introduction

By default, the xPC Target software lets you change parameters in your
target application while it is running in real time.

Note xPC Target Explorer works with multidimensional signals in
column-major format.

Note The xPC Target software cannot tune block parameters of type boolean.

You can also improve overall efficiency by inlining parameters. The xPC
Target product supports the Real-Time Workshop inline parameters
functionality (see the Real-Time Workshop documentation for further details
on inlined parameters). By default, this functionality makes all parameters
nontunable. If you want to make some of the inlined parameters tunable, you
can do so through the Model Parameter Configuration dialog box (see “Inlined
Parameters” on page 3-78).

3-65

3 Signals and Parameters

3-66

Note Opening a dialog box for a source block causes Simulink to pause. While
Simulink is paused, you can edit the parameter values. You must close the
dialog box to have the changes take effect and allow Simulink to continue.

Parameter Tuning with xPC Target Explorer

The xPC Target software lets you change parameters in your target
application while it is running in real time. With these functions, you do not
need to set the Simulink interface to external mode, and you do not need to
connect the Simulink interface with the target application.

You can download parameters to the target application while it is running

or between runs. This feature lets you change parameters in your target
application without rebuilding the Simulink model. You cannot use xPC
Target Explorer to change tunable source block parameters while a simulation
1s running.

After you download a target application to the target PC, you can change
block parameters using xPC Target Explorer. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have created
and downloaded the target application for that model.

1 In xPC Target Explorer, right-click the downloaded target application
node. For example, xpcosc.

2 Select Start.

3 To get the list of parameters in the target application, expand the Model
Hierarchy node under the target application.

Parameter Tuning and Inlining Parameters

The Model Hierarchy expands to show the elements in the Simulink

model.

The model hierarchy shows only those blocks that have tunable parameters.

4 Select the parameter of the signal you want to edit. For example, select

Gain.

The right pane displays the block parameters dialog box for Gain. There
is one parameter, Gain, for this block. The current value of the Gain

TargetPC1

i Configuration
=l File 5 pstem

------- ~E Integrator
------- = Integrator]
------- ~= Signal Generator

g [EI #PC Scopes

-------- Host Scope(z)
------- Target Scope(s)
-------- File Scope(z)

parameter is displayed.

5 Double-click the box that contains the gain value.

The box becomes editable.

6 Enter a new value for the gain.

Porumeters

Signals

3-67

3 Signals and Parameters

3-68

7 Press the Enter key.

The box is updated and the Update Parameter button becomes active.

Updated gain value

)} HPC Target Explorer = |EI |5|

File Target Application Tools Help u

o X8| > = @] W

| *PC Target Hiearachy I TargetPC1: Function Block Parameters: xpoosciGain
-G TargetPC1 -] 1
Configuration 1 2000000

=8 File System

HE PO devices

HpCOSC

Elﬁ Model Hierarchy

Gain

Gainl

GainZ

Inkegrator
Integrator]
Signal Gererator

=03 #PC Scopes
------- % Host Scope(s) = [Update Parameter,

Target Scope(s)
........ File Scopels) =l ! 2

| Refresh Enabled

If there is a scope, the plot frame then updates the signals after running
the simulation with the new parameter value.

8 Stop the target application. For example, to stop the target application
xpcosc, right-click it and select Stop.

The target application on the target PC stops running.

Parameter Tuning and Inlining Parameters

Parameter Tuning with the MATLAB Interface

You use the MATLAB functions to change block parameters. With these
functions, you do not need to set the Simulink interface to external mode, and
you do not need to connect the Simulink interface with the target application.

You can download parameters to the target application while it is running
or between runs. This feature lets you change parameters in your target
application without rebuilding the Simulink model.

After you download a target application to the target PC, you can change
block parameters using xPC Target functions. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have created
and downloaded the target application for that model. It also assumes that
you have assigned tg to the appropriate target PC.

1 In the MATLAB window, type
+tg
or
tg.start
or
start(tg)
The target PC displays the following message:
System: execution started (sample time: 0.001000)
2 Display a list of parameters. Type either
set(tg, 'ShowParameters','on')
or
tg.ShowParameters='on'
The latter command displays a list of properties for the target object.

ShowParameters = on

3-69

3 Signals and Parameters

Parameters =
PARAMETER BLOCK
INDEX VALUE TYPE SIZE NAME NAME
0 1000000 DOUBLE Scalar Gain Gain
1 400 DOUBLE Scalar Gain Gaini
2 1000000 DOUBLE Scalar Gain Gain2
Initial
3 0 DOUBLE Scalar Condition Integrator
4 0 DOUBLE Scalar Initial Integratori
Condition
5 4 DOUBLE Scalar Amplitude Signal
Generator
6 20 DOUBLE Scalar Frequency Signal
Generator

3 Change the gain. For example, to change the Gainl block, type either

tg.setparam(1,800)

or

setparam(tg,1,800)

As soon as you change parameters, the changed parameters in the target
object are downloaded to the target application. The host PC displays the
following message:

ans =

parIndexVec: 1
OldValues: 400
NewValues: 800

If there is a scope, the plot frame then updates the signals after running
the simulation with the new parameters.

4 Stop the target application. In the MATLAB window, type

3-70

Parameter Tuning and Inlining Parameters

-tg
or

tg.stop

or

stop(tg)

The target application on the target PC stops running, and the target PC
displays messages like the following:

minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Note Method names are case sensitive and need to be complete, but property
names are not case sensitive and need not be complete as long as they are
unique.

Resetting Target Application Parameters to Previous Values
You can reset parameters to preceding target object property values by
using xPC Target methods on the host PC. The setparam method returns a
structure that stores the parameter index, the previous value, and the new
value. If you expect to want to reset parameter values, set the setparam
method to a variable. This variable points to a structure that stores the
parameter index and the old and new parameter values for it.

1 In the MATLAB window, type

pt=tg.setparam(1,800)

The setparam method returns a result like

pt =

parIndexVec: 1
Oldvalues: 400
NewValues: 800

3-71

3 Signals and Parameters

3-72

2 To reset to the previous values, type

setparam(tg,pt.parIndexVec,pt.0ldValues)
ans =

parIndexVec: 5

Oldvalues: 800

NewValues: 100

Parameter Tuning with Simulink External Mode

You use Simulink external mode to connect your Simulink block diagram to
your target application. The block diagram becomes a graphical user interface
to your target application. You set up the Simulink interface in external mode
to establish a communication channel between your Simulink block window
and your target application.

In Simulink external mode, wherever you change parameters in the Simulink
block diagram, the Simulink software downloads those parameters to

the target application while it is running. This feature lets you change
parameters in your program without rebuilding the Simulink model to create
a new target application.

Note Opening a dialog box for a source block causes Simulink to pause. While
Simulink is paused, you can edit the parameter values. You must close the
dialog box to have the changes take effect and allow Simulink to continue.

After you download your target application to the target PC, you can connect
your Simulink model to the target application. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have created
and downloaded the target application for that model.

1 In the Simulink window, and from the Simulation menu, click External.

A check mark appears next to the menu item External, and Simulink
external mode is activated.

2 In the Simulink block window, and from the Simulation menu, click
Connect to target.

Parameter Tuning and Inlining Parameters

All of the current Simulink model parameters are downloaded to your
target application. This downloading guarantees the consistency of the
parameters between the host model and the target application.

3 From the Simulation menu, click Start Real-Time Code, or, in the
MATLAB window, type

+tg
or

tg.start
or

start(tg)

The target application begins running on the target PC, and the target
PC displays the following message:

System: execution started (sample time: 0.000250)

4 From the Simulation block diagram, double-click the block labeled Gainl.

The Block Parameters: Gainl parameter dialog box opens.

3-73

3 Signals and Parameters

3-74

=] Function Block Parameters: Gainl x|

Gain
’7Element—wise gain (y = K. *u) or matrix gain {y = K*u or y = u™K).

Main | Signal Attributes I Parameter Attributes I

Gain:

| 800

Multiplication: IElement-wise (K. *u) ;I

Sample time (-1 for inherited):

[-1

J- oK Cancel Help Apply

5 In the Gain text box, enter 800 and click OK.

As soon as you change a model parameter and click OK, or you click the
Apply button on the Block Parameters: Gainl dialog box, all the changed
parameters in the model are downloaded to the target application.

6 From the Simulation menu, click Disconnect from Target.

The Simulink model is disconnected from the target application. Now, if you
change a block parameter in the Simulink model, there is no effect on the
target application. Connecting and disconnecting the Simulink interface
works regardless of whether the target application is running or not.

7 In the MATLAB window, type either
stop(tg)
or

_tg

Parameter Tuning and Inlining Parameters

The target application on the target PC stops running, and the target PC
displays the following messages:

minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Parameter Tuning with a Web Browser

The Parameters pane displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC, you can use the
Parameters page to change parameters in your target application while it is
running in real time:

1 In the left frame, click the Parameters button.
The browser loads the Parameter List pane into the right frame.

If the parameter is a scalar parameter, the current parameter value 1s
shown in a box that you can edit.

If the parameter is a vector or matrix, there is a button that takes you to
another page that displays the vector or matrix (in the correct shape) and
enables you to edit the parameter.

2 Enter a new parameter value into one or more of the parameter boxes,
and then click the Apply button.

The new parameter values are uploaded to the target application.

Saving and Reloading Application Parameters with
the MATLAB Interface

After you have a set of target application parameter values that you are
satisfied with, you can save those values to a file on the target PC. You can
then later reload these saved parameter values to the same target application.
You can save parameters from your target application while the target
application is running or between runs. This feature lets you save and restore
parameters in your target application without rebuilding the Simulink
model. You save and restore parameters with the target object methods
saveparamset and loadparamset.

3-75

3 Signals and Parameters

3-76

The procedures assume that

® You have a target application object named tg.

® You have assigned tg to the appropriate target PC.

® You have a target application downloaded on the target PC.

® You have parameters you would like to save for reuse. See
= “Parameter Tuning with the MATLAB Interface” on page 3-69
= “Parameter Tuning with Simulink External Mode” on page 3-72

= “Parameter Tuning with a Web Browser” on page 3-75

Saving the Current Set of Target Application Parameters

To save a set of parameters to a target application, use the saveparamset
method. The target application can be stopped or running.

1 Identify the set of parameter values you want to save.

2 Select a descriptive filename to contain these values. For example, use the
model name in the filename. You can only load parameter values to the
same target application from which you saved the parameter values.

3 In the MATLAB window, type either

tg.saveparamset('xpc_osc4_parami')

or

saveparamset(tg, 'xpc_osc4_paraml')

The xPC Target software creates a file named xpcosc4_parami in the
current folder of the target PC, for example, C: \xpcosc4_parami.

For a description of how to restore parameter values to a target application,
see “Loading Saved Parameters to a Target Application” on page 3-77. For a
description of how to list the parameters and values stored in the parameter
file, see “Listing the Values of the Parameters Stored in a File” on page 3-77.

Parameter Tuning and Inlining Parameters

Loading Saved Parameters to a Target Application

To load a set of saved parameters to a target application, use the
loadparamset method. You must load parameters to the same model from
which you save the parameter file. If you load a parameter file to a different
model, the behavior is undefined.

This section assumes that you have a parameters file saved from an earlier
run of saveparamset (see “Saving the Current Set of Target Application
Parameters” on page 3-76).

1 From the collection of parameter value files on the target PC, select the one
that contains the parameter values you want to load.

2 In the MATLAB window, type either

tg.loadparamset('xpc_osc4_parami')

or

loadparamset(tg, 'xpc_osc4_parami')

The xPC Target software loads the parameter values into the target
application.

For a description of how to list the parameters and values stored in the
parameter file, see “Listing the Values of the Parameters Stored in a File”
on page 3-77.

Listing the Values of the Parameters Stored in a File

To list the parameters and their values, load the file for a target application,
then turn on the ShowParameters target object property.

This section assumes that you have a parameters file saved from an earlier
run of saveparamset (see “Saving the Current Set of Target Application
Parameters” on page 3-76).

1 Ensure that the target application is stopped. For example, type

tg.stop

3-77

3 Signals and Parameters

3-78

2 Load the parameter file. For example, type

tg.loadparamset('xpc_osc4_parami');

3 Display a list of parameters. For example, type

tg.ShowParameters='on';

and then type
tg

The MATLAB window displays a list of parameters and their values for
the target object.

Inlined Parameters

This procedure describes how you can globally inline parameters for a model,
then specify which of these parameters you still want to be tunable. It
assumes that you are familiar with how to build target applications (if you
are not, read the xPC Target Getting Started Guide first). After you have
performed this procedure, you will able to tune these parameters.

¢ “Tuning Inlined Parameters with xPC Target Explorer” on page 3-81
¢ “Tuning Inlined Parameters with the MATLAB Interface” on page 3-83

Note You cannot tune inlined parameters that are structures.

The following procedure uses the Simulink model xpcosc.mdl as an example.

1 In the MATLAB Command Window, type

Xpcosc

The model is displayed in the Simulink window.

2 Select the blocks of the parameters you want to make tunable. For example,
this procedure makes the signal generator’s amplitude parameter tunable.
Use the variable A to represent the amplitude.

Parameter Tuning and Inlining Parameters

3 Double-click the Signal Generator block and enter A for the Amplitude
parameter. Click OK.

4 In the MATLAB Command Window, assign a constant to that variable.
For example, type

A=4

The value is displayed in the MATLAB workspace.

5 In the Simulink window, from the Simulation menu, click Configuration
Parameters.

The Configuration Parameters dialog box for the model is displayed.
6 Click the Optimization node.
7 In the rightmost pane, select the Inline parameters check box.
The Configure button is enabled.
8 Click the Configure button.

The Model Parameter Configuration dialog box is displayed. Note that the
MATLAB workspace contains the constant you assigned to A.

9 Select the line that contains your constant and click Add to table.

3-79

3 Signals and Parameters

The Model Parameter Configuration dialog box appears as follows.

«) Model Parameter Configuration: Xpcosc - |EI Iil

rDescription

Define the global (tunable) parameters for your model. These parameters affect:
1. the simulation by providing the ability to tune parametars during execution, and
2. the generated code by enabling access to parameters by other modules.

~Source list rGlobal dunable) parameters
IMATL.&EI wiorkspace j

kame
1

Storage class
Sirmulink...

Storage type qualifier

Refresh list | Add totable == [y Femove |

Ready Ok Cancel | Help | Apnply |

If you have more global parameters you want to be able to tune, add them
also.

10 Click Apply, then click OK.
11 In the Configuration Parameters dialog, click Apply, then OK.
12 If you want, increase the model stop time, or set it to inf.

13 When you are finished, click Apply, then OK, and save the model. For
example, save it as xpc_osc5.md1.

14 Build and download the model to your target PC.

3-80

Parameter Tuning and Inlining Parameters

You next can use xPC Target Explorer or the MATLAB interface to work
with the tunable parameters.

Tuning Inlined Parameters with xPC Target Explorer

This procedure describes how you can tune inlined parameters through the
xPC Target Explorer. It assumes that you have built and downloaded the
model from the topic “Inlined Parameters” on page 3-78 to the target PC. It
also assumes that the model is running.

1 If you have not yet started xPC Target Explorer, do so now. Be sure it is
connected to the target PC to which you downloaded the xpc_osc5 target
application.

2 To get the list of tunable inlined parameters in the target application,
expand the target application node, then expand the Model Hierarchy
node under the target application node.

1 wpc_osch

ﬁ kodel Hierarchy

Gain

Gaind

GainZ

Inteqgrator
Integrator

Signal Generator
Sum

=1 Model Parameters

[PC Scopes

thrhthththhoh

Note that the Model Hierarchy node displays a list of signals and an object
called Model Parameters. Model Parameters contains the list of tunable
inlined parameters.

3 To display the tunable parameters, select Model Parameters.
The constant A and its value are shown in the right pane.
4 Double-click the box that contains the tunable parameter A.

The box becomes editable.

3-81

3 Signals and Parameters

3-82

5 Enter a new value for the parameter and press Enter.

The box is updated and the Update Parameter button becomes active.

*PC Target Hierarchy

TargetPCl: Model Parameters

Elg Hast PC Rioot
: % Compiler(z] Configuration

|:_:| TargetPC1

g Configuration

B File System

Hi PC| Devices

| #pc_osch

Eﬁ Model Higrarchy
Gain
Gainl
Gain2
Inteqgrator
Integrator]

LLLLL

Sum

[]-----[@ #PC Scopes
argetPC2
argetFC3

IE DLM[z]: C:hvwork sspchr20070

Signal Generatar

151 Model Parameters

£

1000

Update Farameter

6 To apply the new value, click the Update Parameter button.

7 To verify the updated value, select the signal object associated with A. For
example, select Signal Generator.

Parameter Tuning and Inlining Parameters

The value of Signal Generator is shown in the right pane.

| *PC Target Hiearachy

TargetPC1: Signal name: Signal Generstor

EQ Host PC Root

=8 TargetPC1

B % Configuration

i i Communication
e Seftings

b 8 Appearance
B, File System
B8 PCl devices

- wpo_ozch

Eﬁ Model Hierarchy
....... £ Gan

....... = GFainl

....... = Gane
------- ~= |ntegrator
------- ~= |ntegrator

....... .-E Sum

8 Stop the target application.

1

------- % Compiler(z] Configuration

—

1000

[E DLk[z]: D workbsspohel 4

Signal Generator

-------- =1 Model Parameters

Tuning Inlined Parameters with the MATLAB Interface
This procedure describes how you can tune inlined parameters through the

MATLAB interface. It assumes that you have built and downloaded the model

from the topic “Inlined Parameters” on page 3-78 to the target PC. It also

assumes that the model is running.

You can tune inlined parameters using a parameter ID as you would
conventional parameters.

e Use the getparamid function to get the ID of the inlined parameter you
want to tune. For the block_name parameter, leave a blank (' ').

e Use the setparam function to set the new value for the inlined parameter.

3-83

3 Signals and Parameters

1 Save the following code in an M-file. For example, change_inlineA.
tg=xpc; %Create xPC Target object
pid=tg.getparamid('"','A"'); %Get parameter ID of A
if isempty(pid) %Check value of pid.

error('Could not find A');

end
tg.setparam(pid,100); %If pid is valid, set parameter value.

2 Execute that M-file. For example, type
change_inlineA
3 To see the new parameter value, type
tg.showparameters='on'
The tg object information is displayed, including the parameter lines:
NumParameters = 1
ShowParameters = on

Parameters = INDEX VALUE TYPE SIZE PARAMETER NAME BLOCK
NAME

0 100 DOUBLE Scalar A

3-84

Booting from a DOS Device

¢ “DOSLoader Mode” on page 4-2
* “DOSLoader Target Setup” on page 4-7

4 Booting from a DOS Device

4-2

DOSLoader Mode

In this section...

“Introduction” on page 4-2
“DOSLoader Mode Overview” on page 4-2
“Restrictions” on page 4-3

“Updating the xPC Target Environment” on page 4-4

“Creating a DOS System Disk” on page 4-6

Introduction

DOSLoader mode allows you to boot a target PC from a device other than
removable media or a dedicated network, such as a hard disk or flash memory.
You can then download a target application from the host PC to the target
PC. After the target PC boots the kernel, it waits for the host computer to
download a real-time application. You can control the target application from
either the host PC or the target PC. See “DOSLoader Mode Overview” on
page 4-2 for further details.

DOSLoader Mode Overview

The following summarizes the sequence of events for DOSLoader mode. For a
detailed step-by-step procedure, see “DOSLoader Target Setup” on page 4-7.

1 As necessary, format a 3.5-inch disk or have available a blank CD.

2 Copy a version of DOS onto this disk and insert this DOS disk into the
host PC disk drive.

3 In the host PC MATLAB Command Window, type xpcexplr.

4 In the xPC Target Explorer xPC Target Hierarchy pane, select a target
PC Configuration node.

5 In the configuration pane, select the DOS Loader tab.

6 Create the following files:

DOSloader Mode

* DOS files — Provide your own copy of DOS to boot the target PC. For
example, you can acquire DOS from FreeDOS.

The MathWorks has tested the xPC Target software with FreeDOS Beta
8 (“Nikita”) distribution, MS-DOS (6.0 or higher), PC DOS, and Caldera
OpenDOS.

® autoexec.bat — xPC Target version of this file that calls the
xpcboot.com executable to boot the xPC Target kernel.

e * _rtb — This file contains the xPC Target kernel. It also contains, as
applicable, specifications such as serial or TCP/IP communications and
the IP address of the target PC.

® xpchboot.com —- Contains the xPC Target boot executable. This file
executes an xPC Target application and executes the *.rtb file.

7 Set up the target PC boot device such as a 3.5-inch floppy disk, flash disk,
or a hard disk drive.

8 As necessary, transfer the files to the target PC.
9 Boot the target PC.

When you boot the target PC, the target PC loads DOS, which then calls
the xPC Target autoexec.bat file to start the xPC Target kernel (*.rtb).
The target PC then awaits commands from the host PC.

10 To execute a target application, build and download one from the host PC
to the target PC. DOSLoader mode does not automatically load a target
application to the target PC. The xPC Target application executes entirely
in protected mode using the 32-bit flat memory model.

Note This mode requires that the host PC and target PC communicate either
via an RS-232 serial connection or a TCP/IP network connection.

Restrictions

To use either the DOSLoader mode, your DOS environment must comply
with the following restrictions:

4-3

4 Booting from a DOS Device

¢ The CPU must execute in real mode.
e While loaded in memory, the DOS partition must not overlap the address
range of a target application.

To satisfy these restrictions,

® Do not use additional memory managers like emm386 or gemm.

® Avoid any utilities that attempt to load in high memory (for example,
himem.sys). If the target PC DOS environment does not use a config.sys
file or memory manager entries in the autoexec.bat file, there should be
no problems when running xpcboot.com.

Updating the xPC Target Environment

You can use the function getxpcenv to see the current selection for
TargetBoot, or you can view this through the xPC Target Explorer window.
Start the MATLAB interface and execute the function

xpcexplr

In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node. You see the boot mode tabs. The choices are
* Boot Floppy — For creating a 3.5-inch target boot disk.

® CD Boot — For creating a boot image that you can burn onto a CD to
create a target boot CD.

* DOS Loader — For invoking the kernel on the target PC from DOS.

DOSloader Mode

Boot Floppy | CD' Boot DOS Loader | Metwork Boot| Standalone

Select a location to create the DOS Loader

Location [C:vw/orkiwpched EEmeEs |
Create DOS Loader |

Revert Apply

¢ Network Boot — For creating a boot image that you can boot from within
a dedicated network.

e Standalone (visible only for xPC Target Embedded Option™) — For
invoking the kernel on the target PC from DOS and automatically starting
the target application without connecting to a host computer. With this
mode, the kernel and the target application are combined as a single
module that is placed on the boot device.

In the Configuration node, select DOS Loader. The xPC Target environment
is updated when you change the value. Create DOSLoader files by clicking
the Create DOS Loader button.

For more detailed information about how to use the xPC Target Explorer
window, see “xPC Target Explorer” in the xPC Target Getting Started Guide.

4-5

4 Booting from a DOS Device

Creating a DOS System Disk

DOSLoader mode allows for booting the target PC from devices other than
disk drives or networks, such as flash disks and hard drives. To use this
mode, you need a minimal DOS system on the boot device. Use the following
DOS command, where drive is the drive that you want to use as the boot
device, such as C..

sys drive

It 1s helpful to copy additional DOS utilities to the boot disk, including

e A DOS editor to edit files
¢ The format program to format a hard disk or flash memory
¢ The fdisk program to create partitions

¢ The sys program to transfer a DOS system onto another drive, such as
the hard disk drive

Note xPC Target does not include a DOS license. You must obtain a valid
DOS license for your target PC.

Once configured for booting, you can transfer the DOSLoader files (created
using xpcexplr) to the device. A config.sys file is not necessary. The
autoexec.bat file should be used to boot the xPC Target loader. This is
described in the following sections.

DOSloader Target Setup

DOSLoader Target Setup

In this section...

“Introduction” on page 4-7

“Updating Environment Properties and Creating a Boot Disk” on page 4-7
“Copying the Kernel to Flash Memory” on page 4-9

“Creating a Target Application for DOSLoader Mode” on page 4-11

“Creating DOSLoader Files with a Command-Line Interface” on page 4-11

Introduction

DOSLoader mode allows you to copy the xPC Target kernel to the target
flash disk, remove the disk drive, and then boot the xPC Target kernel.
Alternatively, you can also boot the xPC Target kernel from the target PC
3.5 inch disk drive. The target application is still downloaded from the host
PC. Use this mode for applications where an xPC Target host is not easily
accessible.

Updating Environment Properties and Creating a
Boot Disk

The xPC Target software uses the environment properties to determine what
files to create for the various target boot modes.

This procedure assumes you have serial or network communication working
correctly between your host computer and a target PC. It is helpful to
successfully create a target application with the Boot Floppy, CD Boot, or
Network Boot tabs before trying to create a kernel that boots from DOS.

Note If you want to create a boot disk to boot the target PC into DOSLoader
mode, use a 3.5-inch disk. You can use a CD to transfer DOSLoader files to the
target PC, but you cannot create a CD to boot the target in DOSLoader mode.

1 On the host computer, start the MATLAB interface.

4 Booting from a DOS Device

2 In the MATLAB Command Window, type

xpcexplr

The xPC Target Explorer window opens.

3 In the xPC Target Explorer xPC Target Hierarchy pane, select a target
PC Configuration node.

4 In the configuration pane, select DOS Loader.

5 In the Location field, enter or browse to the directory to contain the xPC
Target files. By default, the directory is current working directory.

6 Click Apply.
7 Click Create DOS Loader.

If you entered a floppy drive (for example, a:) , the software copies the
DOSLoader files to the 3.5-inch disk.

8 If you entered a floppy drive for the Location field, insert a 3.5-inch disk,
and then click OK.

Regardless of the Location entry, the files xpcsgo.rtb (serial) or
xpctgo.rtb (TCP/IP), xpcboot.com, and autoexec.bat are created.

If you enter a floppy drive, these files are written to the 3.5-inch disk. If
you enter a local directory other than a floppy drive, the software creates
these files in that directory.

With DOSLoader mode, the correct *.rtb file is created according to the
options specified in the following table.

xPC Target HostTargetComm: HostTargetComm:
Environment RS-232 TCP/IP
TargetScope: xpcsto.rtb xpctto.rtb
Disabled

TargetScope: Xpcsgo.rtb xpctgo.rtb
Enabled

DOSloader Target Setup

Note Some target PCs might not boot if you try to boot them with a boot
disk configured for DOSLoader mode and a maximum model size of 16
MB. If you encounter this problem, create a new boot disk with a different
configuration, for example DOSLoader mode and a maximum model size of
1 MB or 4 MB.

Note that the autoexec.bat file should contain at least the following line:

xpchoot xxx.rtb

where xxx.rtb is the file described in the table above. Inspect this
autoexec.bat file to confirm this.

9 If you want to boot the target PC from the 3.5-inch disk,
a Remove the 3.5-inch disk from the host PC.
b Put that disk into the target PC disk drive.

¢ Reboot the target PC. The DOS is booted from the target boot disk and
the autoexec.bat files, resulting in the automatic execution of the xPC
Target loader. From this point onward, the CPU runs in protected mode
and DOS is discarded.

Otherwise, if you want to boot the target PC from flash memory instead of
the 3.5-inch disk, see “Copying the Kernel to Flash Memory” on page 4-9 for a
description of how to copy the kernel to flash memory. The same procedure
works with flash disks and other boot devices.

Note You can repeat this procedure as necessary. However, the xPC Target
product does not include DOS licenses. You must purchase valid DOS licenses
for your target PCs from the supplier of your choice.

Copying the Kernel to Flash Memory

One method for transferring the kernel files from a host PC to a target PC is
to use an external 3.5-inch disk drive or CD disk drive.

4 Booting from a DOS Device

4-10

After you create a disk with the kernel files on a host PC, you can copy the
kernel files from the 3.5-inch disk or CD to the flash disk. See “Updating
Environment Properties and Creating a Boot Disk” on page 4-7.

1 If there is a 3.5-inch disk or CD, remove it. On the target PC, press the
Reset button.

2 Boot into the DOS prompt. For example, you can create a DOS disk and
boot the target PC off this disk.

The boot process is stopped and a DOS prompt is displayed.

3 Insert the 3.5-inch disk or CD with the xPC Target kernel into the target
PC external disk drive.

4 Create a directory to contain the xPC Target files. For example, type

mkdir C:\xpcfiles

5 Copy files to C:\xpcfiles. For example, type

copy A:\xpcsgo.rtb C:\xpcfiles
copy A:\xpcboot.com C:\xpcfiles
copy A:\autoexec.bat C:\xpcfiles

6 If you want the kernel to run when you press the Reset button on your
target PC, save a copy of the file C: \autoexec.bat to a backup file, such
as C:\autoexec_back.wrk.

7 Edit the file C: \autoexec.bat to include the following lines. Adding these
commands to C:\autoexec.bat directs the system to load the kernel from
C:\xpcfiles.

cd C:\xpcfiles
xpcboot xpcsgo.rtb

Note The file C:\autoexec.bat includes the files you want the system to
execute when the system starts up.

8 Remove the disk, and then, on the target PC, press the Reset button.

DOSloader Target Setup

Creating a Target Application for DOSLoader Mode

For DOSLoader mode, a target application is created on a host PC and
downloaded to your target PC.

After you set the Simulink and Real-Time Workshop parameters for code

generation with the xPC Target software in your Simulink model, you can
use the xPC Target environment with DOSLoader mode to create a target
application.

1 In the MATLAB window, type the name of a Simulink model. For example,
type

Xpc_osc3
A Simulink window opens with the model.

2 From the Tools menu, point to Real-Time Workshop, and then click
Build Model.

The Real-Time Workshop and xPC Target products create a target application
and download it to your target.

Creating DOSLoader Files with a Command-Line
Interface

You use DOSLoader files to load and run the xPC Target kernel. After you
make changes to the xPC Target environment properties, you need to create
or update the kernel (DOSLoader files).

To create DOSLoader files for the current xPC Target environment, use the
following procedure:

1 In the MATLAB window, type

getxpcenv
2 Ensure that the following xPC Target properties are set as follows:

® TargetBoot — DOSLOader
e DOSLoaderLocation — Your host PC DOSLoader files location

4-11

4 Booting from a DOS Device

3 If these properties are not set with the correct values, use the setxpcenv
function to set them. For example

setxpcenv('TargetBoot', 'DOSLoader')
setxpcenv (DOSLoaderLocation, 'c:\work\xpc\dosloader')
updatexpcenv

4 In the MATLAB window, type

xpcbootdisk

The xPC Target software displays the following message and creates the
DOSLoader files.

Current boot mode: DOSLoader
XPC Target DOS Loader files are successfully created

5 Transfer the DOSLoader files as described in “Copying the Kernel to Flash
Memory” on page 4-9.

4-12

Embedded Option

The xPC Target Embedded Option product allows you to boot the target PC
from a device other than a 3.5-inch disk or CD drive or network boot image,
such as a hard disk or flash memory. It also allows you to deploy stand-alone
applications on the target PC independent of the host PC. This chapter
includes the following sections:

¢ “Introduction” on page 5-2

¢ “xPC Target Embedded Option Modes” on page 5-3

¢ “Embedded Option Setup” on page 5-7

e “Stand-Alone Target Setup” on page 5-10

5 Embedded Option

Introduction

The xPC Target Embedded Option software allows you to boot the xPC Target
kernel from a 3.5-inch disk drive and other devices, including a flash disk or a
hard disk drive. By using the xPC Target Embedded Option software, you
can configure a target PC to automatically start execution of your embedded
application for continuous operation each time the system is booted. You

can use this capability to deploy your own real-time applications on target
PC hardware. You can also control the target application using custom GUIs
or the Web browser interface when deploying the application with the xPC
Target Embedded Option software. You can deploy GUIs that you develop
with the xPC Target API and the COM API on any host Microsoft® Windows®
system without MATLAB software.

The xPC Target Embedded Option software has Standalone mode. This mode
bundles the kernel and target application into one entity that you can copy
onto a device such as the target PC hard drive. This mode allows the target
PC to run as a stand-alone PC with the target application already loaded.
You can control the real-time application with the command-line interface
using a keyboard on the target PC.

This feature uses the xPC Target API with any programming environment,
or the xPC Target COM API with any programming environment, such as
Visual Basic®, that can use COM objects. See the xPC Target API Guide for
further information.

xPC Target Embedded Option™ Modes

xPC Target Embedded Option Modes

In this section...

“Introduction” on page 5-3

“Standalone Mode Overview” on page 5-4

“Restrictions” on page 5-6

Introduction

The xPC Target Embedded Option software extends the xPC Target base
product with the Standalone mode

Use this mode to load the target PC with both the xPC Target kernel and a
target application. This mode of operation can start the kernel on the target
PC from a flash disk or hard disk. After starting the kernel on the target PC,
Standalone mode also automatically starts the target application that you
loaded with the kernel. This configuration provides complete stand-alone
operation. Standalone mode eliminates the need for a host PC and allows
you to deploy real-time applications on target PCs. See “Standalone Mode
Overview” on page 5-4 for further details.

Regardless of the mode, you initially boot your target PC with DOS from any
boot device, then the xPC Target kernel is started from DOS. The xPC Target
software only needs DOS to boot the target PC and start the xPC Target
kernel. DOS is no longer available on the target PC unless you reboot the
target PC without starting the xPC Target kernel.

Note, you cannot build a 16 MB target application to run in Standalone mode.

Note The xPC Target Embedded Option software requires a boot device with
DOS installed. It otherwise does not have any specific requirements as to the
type of boot device. You can boot the xPC Target software from any device
that has DOS installed. DOS software and license are not included with the
xPC Target or xPC Target Embedded Option software.

5-3

5 Embedded Option

Without the xPC Target Embedded Option software, you can only download
real-time applications to the target PC after booting the target PC from an
xPC Target boot disk or network boot image.

The following are some instances where you might want to use the xPC
Target Embedded Option product. You might have one of these situations if
you deploy the target PC in a small or rugged environment.

e Target PC does not have a 3.5-inch disk or CD drive.

® The Target PC 3.5-inch or CD disk drive must be removed after setting
up the target system.

® You do not have a dedicated network to boot the target PC from the host PC.

Standalone Mode Overview

The primary purpose of the Standalone mode is to allow you to use a target
PC as a stand-alone system. Standalone mode enables you to deploy control
systems, DSP applications, and other systems on PC hardware for use in
production applications using PC hardware. Typically these production
applications are found in systems where production quantities are low to
moderate.

The following summarizes the sequence of events for Standalone mode. For a
detailed step-by-step procedure, see “Stand-Alone Target Setup” on page 5-10.

1 Ensure that the target PC has an appropriate version of DOS on the target
PC hard drive. The MathWorks has tested the xPC Target software with
FreeDOS Beta 8 (“Nikita”) distribution, MS-DOS (6.0 or higher), PC DOS,
and Caldera OpenDOS.

2 Create a standard boot disk and boot the target PC.
3 From the host PC MATLAB window, type xpcexplr.

4 In the xPC Target Explorer xPC Target Hierarchy pane, select a target
PC Configuration node.

5 In the configuration node, select the Standalone tab.

6 Click the Enable Standalone Mode check box.

xPC Target Embedded Option™ Modes

7 Select and build a model.

This step creates a directory in the current working folder named
modelname_xpc_emb.

8 Copy the contents of model name_emb to the target PC hard drive. The
target PC hard drive should now contain the following files:

® DOS files — Provide your own copy of DOS to boot the target PC (see
step 1).

® *_rtb — This file contains the xPC Target kernel. It also contains, as
applicable, options such as serial or TCP/IP communications and the IP
address of the target PC.

® xpcboot.com — This file executes loads and executes the *.rtb file.

® autoexec.bat — xPC Target version of this file that calls the
xpcboot.com executable to boot the xPC Target kernel.

9 Boot the target PC.

When you boot the target PC, the target PC loads DOS, which then calls
the xPC Target autoexec.bat file to start the xPC Target kernel (*.rtb)
and associated target application. If you set up the boot device to run the
xPC Target autoexec.bat file upon startup, the target application starts
executing as soon as possible. The xPC Target application executes entirely
in protected mode using the 32-bit flat memory model.

Note This mode does not require any connection between the host PC and
target PC.

If you do not want to view signals on the target PC, you do not need a monitor
for the target PC, nor do you need to add target scopes to the application.

In this instance, your xPC Target system operates as a black box without

a monitor or keyboard. Stand-alone applications are automatically set to
continue running for an infinite time duration or until the target computer

is turned off.

5-5

5 Embedded Option

5-6

Restrictions

To use the Standalone mode, your DOS environment must comply with the

following restrictions:

® The CPU must execute in real mode.

®* While loaded in memory, the DOS partition must not overlap the address
range of a target application.

To satisfy these restrictions,

® Do not use additional memory managers like emm386 or qemm.

¢ Avoid any utilities that attempt to load in high memory (for example,
himem.sys). If the target PC DOS environment does not use a config.sys
file or memory manager entries in the autoexec.bat file, there should be
no problems when running xpcboot.com.

Embedded Option Setup

Embedded Option Setup

In this section...

“Updating the xPC Target Environment” on page 5-7
“Creating a DOS System Disk” on page 5-9

Updating the xPC Target Environment

After the xPC Target Embedded Option software has been correctly installed,
the xPC Target environment, visible through xpcexplr or getxpcenv,
contains two additional property choices for Standalone, in addition to the
default BootDisk that you normally use with the xPC Target software.

It is assumed that the xPC Target environment is already set up and working
properly with the xPC Target Embedded Option product enabled. If you have
not already done so, confirm this now.

You can use the function getxpcenv to see the current selection for
TargetBoot, or you can view this through the xPC Target Explorer window.
Start the MATLAB interface and execute the function

xpcexplr

In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node. You see the boot mode tabs. The choices are
* Boot Floppy — For creating a 3.5-inch target boot disk.

¢ CD Boot — For creating a boot image that you can burn onto a CD for
target boot CD.

¢ DOS Loader — For invoking the kernel on the target PC from DOS.

¢ Standalone — For invoking the kernel on the target PC from DOS and
automatically starting the target application without connecting to a host

5 Embedded Option

5-8

computer. With this mode, the kernel and the target application are
combined as a single module that is placed on the boot device.

Boot Floppy I CD Boat I Dos Lu:uaderl Metwork Boot Standalone l

Enabling standalone mode will cause the mw build process to bundle a complete
image that contains the boat lnader, kernel and the model inta the model
directory. Other boot modes cannot be uzed when standalone mode iz enabled.

¥ Enable Standalone Maods

Revert Apply

e Network Boot — For creating a boot image that you can boot from within
a dedicated network.

In the Configuration node, select Standalone. The xPC Target environment
1s updated, but you do not create a new target boot disk. Upon building
your next real-time application, all necessary xPC Target files are saved to
a subfolder below your current working folder. This subfolder is named
with your model name with the string ' xpc_emb' appended, such as
Xpcosc_xpc_emb.

For more detailed information about how to use the xPC Target Explorer
window, see “xPC Target Explorer” in the xPC Target Getting Started Guide.

Embedded Option Setup

Creating a DOS System Disk

When using Standalone mode, you must first boot your target PC with DOS.
You can use Standalone mode from a boot device such as flash disk or a
hard disk drive.

To boot DOS with a target boot disk, a minimal DOS system is required on
the boot disk. With DOS, you can create a DOS boot disk using the command

sys A:

Note The xPC Target Embedded Option product does not include a DOS
license. You must obtain a valid DOS license for your target PC.

It 1s helpful to copy additional DOS utilities to the boot disk, including

¢ A DOS editor to edit files

¢ The format program to format a hard disk or flash memory

¢ The fdisk program to create partitions

¢ The sys program to transfer a DOS system onto another drive, such as

the hard disk drive

A config.sys file is not necessary. The autoexec.bat file should be created
to boot the loader or a stand-alone xPC Target application automatically. This
is described in the following sections.

5-9

5 Embedded Option

Stand-Alone Target Setup

5-10

In this section...

“Before You Start” on page 5-10
“Updating Environment Properties” on page 5-11
“Creating a Kernel/Target Application” on page 5-11

“Copying the Kernel/Target Application to the Target PC Flash Disk” on
page 5-12

Before You Start

Standalone mode combines the target application with the kernel and boots
them together on the target PC from the hard drive (or, alternatively, flash
memory). The host PC does not need to be connected to the target PC.

Before you start, set up your system as described.

1 Create a standard boot disk or network boot image for serial or network
communication (depending on your configuration). You will need to do
this so that you can copy your Standalone mode files to the target PC. See
“Serial Communication”, “Network Communication”, “Booting Target PCs
from Boot Floppy Disk”, and “xPC Target Boot Options” in the “Installation
and Configuration” chapter of the xPC Target Getting Started Guide.

2 Boot the target PC.

3 Ensure that your target PC hard drive is a serial ATA (SATA) or parallel
ATA (PATA)/Integrated Device Electronics (IDE) drive. The xPC Target
product supports file systems of type FAT-12, FAT-16, or FAT-32. Ensure
that the hard drive is not cable-selected and that the BIOS can detect it.

After you create the stand-alone target application files, you will copy them
to the target PC hard drive using the File Transfer Protocol (FTP) functions
of the xPC Target file system. You do not need to be familiar with the xPC
Target file system before you start, but for further information on this feature,
see Chapter 9, “Working with Target PC Files and File Systems”.

Stand-Alone Target Setup

Updating Environment Properties

The xPC Target software uses the environment properties to determine what
files to create for the various target boot modes.

This procedure assumes you have serial or network communication working
correctly between your host computer and a target PC.

1 On the host computer, start the MATLAB interface.
2 In the MATLAB window, type
xpcexplr
The xPC Target Explorer window opens.

3 In the xPC Target Explorer xPC Target Hierarchy pane, select a target
PC Configuration node.

4 Click the Standalone tab.

The xPC Target software updates the environment properties, and the
build process is ready to create a stand-alone kernel/target application. See
“Creating a Kernel/Target Application” on page 5-11. For Standalone mode,
you do not create an xPC Target boot disk or network boot image. Instead,
you copy files created from the build process to the target PC hard drive.

Creating a Kernel/Target Application

Use the xPC Target software with Standalone mode to create a combined
kernel and target application with utility files. A combined kernel and target
application allows you to disconnect your target PC from a host PC and run
stand-alone applications.

After you set the Simulink and Real-Time Workshop parameters for code
generation with the xPC Target software in your Simulink model, you can use
the xPC Target software with Standalone mode to create a target application:

1 In the MATLAB window, type the name of a Simulink model. For example,
type

Xpc_osc3

5-11

5 Embedded Option

5-12

A Simulink window opens with the model.

2 From the Tools menu, point to Real-Time Workshop, and then click
Build Model.

Real-Time Workshop and xPC Target software create a folder
xpc_osc3_xpc_emb with the following files:

® autoexec.bat — This file is automatically invoked by DOS. It then runs
xpcboot.com and the *.rtb file.

® xpc_osc3.rtb — This image contains the xPC Target kernel and your
target application.

® xpcboot.com — This file is a static file that is part of the xPC Target
Embedded Option software.

Refer to “Copying the Kernel/Target Application to the Target PC Flash Disk”
on page 5-12 for a description of how to transfer these files to the target PC.

Note If the size of the compiled target application (DLM) exceeds the
Maximum model size you selected in xPC Target Explorer, the software will
generate an error during the build process.

Copying the Kernel/Target Application to the Target
PC Flash Disk

You build a target application on a host PC using the Real-Time Workshop
and xPC Target products, and a C/C++ compiler. One method for transferring
the files from the host PC to a target PC is to use the FTP functions of the
xPC Target file system.

After you build a stand-alone application on a host PC, you can copy files from
the host PC to the target PC hard drive or flash disk. If you have not already
created the necessary files, see “Creating a Kernel/Target Application” on
page 5-11.

1 Ensure that your target PC 1is still booted from a target PC boot disk.

Stand-Alone Target Setup

2 In the MATLAB Command Window, change folder on the host computer to
the folder that contains the kernel/target application files.

3 Create the folder C:\xpcfiles and copy files to that folder. For example,
type

f=xpctarget.ftp

f.mkdir('xpcfiles')

f.cd('xpcfiles')

f.put('autoexec.bat')

f.put('xpcboot.com')

f.put('xpc_osc3.rtb')

4 If you want your stand-alone application to run when you reboot your target
PC, remove the 3.5-inch disk or CD from the target PC, reboot the target
PC, and bring up the DOS prompt. For example, if you see the message for
selecting the operating system to start, select Microsoft Windows.

Note If the target PC that you want to boot in Standalone mode was
previously booted from the network boot image, selecting the Enable
Standalone Mode check box should disable the network boot capability.

The boot process is stopped and a DOS prompt is displayed.

5 At the DOS prompt, save a copy of the target PC file C:\autoexec.bat to
a backup file, such as C:\autoexec_back.wrk.

6 Edit the target PC file C: \autoexec.bat to include the following lines.
Adding these commands to C: \autoexec.bat directs the system to execute
the autoexec.bat file located in C: \xpcfiles.

cd C:\xpcfiles
autoexec

5-13

5 Embedded Option

Note Do not confuse C: \xpcfiles\autoexec.bat with C:\autoexec.bat.
The file C: \xpcfiles\autoexec.bat includes the command xpcboot.com
to start the xPC Target kernel and stand-alone application. The file
C:\autoexec.bat includes the files you want the system to execute when
the system starts up.

7 Reboot the target PC.

8 The sequence of calls during the boot process is
a C:\autoexec.bat
b C:\xpcfiles\autoexec.bat
¢ C:\xpcfiles\xpchoot.com

d C:\xpcfiles\<application>.rtb

The stand-alone target application should now be running on the target PC.

5-14

Software Environment and
Demos

¢ “Using Environment Properties and Functions” on page 6-2

e “xPC Target Demos” on page 6-9

6 Software Environment and Demos

Using Environment Properties and Functions

In this section...

“Introduction” on page 6-2

“Getting a List of Environment Properties for Default Target PCs” on
page 6-2

“Changing Environment Properties with xPC Target Explorer” on page 6-3

“Changing Environment Properties with a Command-Line Interface for
Default Target PCs” on page 6-7

Introduction

The xPC Target environment defines the connections and communication
between the host and target computers. It also defines the build process
for a real-time application. You can define the xPC Target environment
through either the MATLAB interface or xPC Target Explorer. The xPC
Target environment provides a number of demos that help you understand
the product.

Refer to the function getxpcenv to list the environment variables for the
default target PC environment. See Chapter 7, “Working with Target PC
Environments” for a description of how you can manage multiple target PC
environments through the MATLAB interface.

To enter properties specific to your model and its build procedure, see
“Entering the Real-Time Workshop Parameters” in the xPC Target Getting
Started Guide. These properties are saved with your Simulink model.

Getting a List of Environment Properties for Default
Target PCs

To use the xPC Target functions to change environment properties, you need
to know the names and allowed values of these properties. Use the following
procedure to get a list of the property names, their allowed values, and their
current values:

1 In the MATLAB Command Window, type

Using Environment Properties and Functions

setxpcenv

The MATLAB interface displays a list of xPC Target environment
properties and the allowed values. For a list of the properties, see the
function getxpcenv.

2 Type

getxpcenv

The MATLAB interface displays a list of xPC Target environment
properties and the current values.

Alternatively, you can use the xPC Target Explorer window to view and
change environment properties.

Changing Environment Properties with xPC Target
Explorer

The xPC Target software lets you define and change environment properties.
These properties include the path to the C/C++ compiler, the host PC COM
port, the logging buffer size, and many others. Collectively these properties
are known as the xPC Target environment.

To change an environment property using the xPC Target GUI, xPC Target
Explorer, use the following procedure:

1 In the MATLAB window, type

xpcexplr

6 Software Environment and Demos

6-4

The MATLAB interface opens the xPC Target Explorer window.

) ®PC Target Explorer ;Iglll

File Taroet Application Toals Help £
g X 2| = [E| W
‘ *PC Target Hiearachy I Host PC Root

=] Host PC Fioot =
i g;____% renmirs 1| [HOSt PC Root Information
&[] DLM[s) DA
2 {E5 TargetPC1 Host PC Root contains host configuration properties and
EI% Configuratio | [all the xPC Target applications (DLMs). Once your target
8 Commi | [PCs are configured and cennected, you can download
& Setting | [your target application to the connected target PC.

......... & Appea
-------- Q File System | [<PC Target Explorer always has a default target PC node

-------- B3 PCl devices | [in its configuration. The default target PC node is always

B TargetPC2 boldfaced. In a multitarget environment, this visual aid
helps you easily identify the default target PC.
4] | | Configuring the xPC Target Host PC |

| Refresh Enahled

Note the contents of the left pane. This is the xPC Target Hierarchy
pane.

This pane contains all the objects in your xPC Target hierarchy. As you
add objects to your system, xPC Target Explorer adds their corresponding
nodes to the xPC Target Hierarchy pane. The most important node is
the HostPC node. It represents the host PC. The most important node is
the TargetPC node. Each time you add a target PC node to xPC Target
Explorer, a corresponding node is added to the xPC Target Hierarchy
pane, starting with TargetPC1 and incrementing with the addition of each
new target PC node.

The right pane displays information about the item selected in the left
pane. This pane also displays xPC Target environment properties for the
HostPC and TargetPC nodes. You edit these properties in the right pane.

To change the size of the left or right pane, select and move the divider
between the panes left or right.

Using Environment Properties and Functions

The Configuration node under the Target PC node has the target
PC-specific configuration pane. If your license does not include the xPC
Target Embedded Option product, you can choose Boot Floppy, CD Boot,
DOS Loader, or Network Boot. With the xPC Target Embedded Option
license, you have the additional choice of Standalone.

2 Change properties in the environment in the right pane by entering new
property values in the text boxes or choosing items from the lists.

xPC Target Explorer applies changes to the environment properties as soon
as you make them in the right pane.

To change environment properties for target PCs, see “Configuring
Environment Parameters for Target PCs” on page 6-5.

Configuring Environment Parameters for Target PCs
You can optionally configure the environment parameters for the target PC

node in your xPC Target system. This section assumes that
® You have already added target PC nodes to your system.

® You have already configured the communication parameters between the
host PC and the target PC.

Note In general, the default values of these parameters are sufficient for
you to use the xPC Target software.

1 In the xPC Target Explorer, expand a target PC node.

A Configuration node appears. Under this are nodes for Communication,
Settings, and Appearance. The parameters for the target PC node are
grouped in these categories.

2 Select Settings.
The Settings Component pane appears to the right.

3 In the Target RAM size (MB) field, enter

6 Software Environment and Demos

® Auto — The target kernel automatically attempts to determine the
amount of memory.

® Manual — The amount of RAM, in MB, installed on the target PC.

This field defines the total amount of installed RAM in the target PC.
The RAM 1is used for the kernel, target application, data logging, and
other functions that use the heap.

From the Maximum model size list, select either 1 MB, 4 MB, or 16

MB. Choosing the maximum model size reserves the specified amount

of memory on the target PC for the target application. The remaining
memory is used by the kernel and by the heap for data logging. Note that
this parameter is only available for Standalone mode. You cannot specify a
maximum model size for Boot Floppy, DOSLoader, or Network Boot modes.
These modes allow the loading of arbitrarily-sized target applications.

Note You cannot build a 16 MB target application to run in Standalone
mode.

By default, the Enable secondary IDE check box is not selected. Select
this check box only if you want to use the disks connected to a secondary
IDE controller. If you do not have disks connected to the secondary IDE
controller, do not select this check box.

By default, the Target PC is a 386/486 check box is not selected. You
must select this check box if your target PC has a 386 or 486 compatible
processor. If your target PC has a Pentium or higher compatible processor,
selecting this check box will slow the performance of your target PC.

By default, the Multicore CPU support check box is cleared. You can
select this check box if your target PC has multicore processors and you
want to take advantage of them.

8 In the xPC Target Hierarchy pane, select Appearance.

The Appearance Component pane appears to the right.

9 From the Target scope list, select either Enabled or Disabled. The

property Target scope is set by default to Enabled. If you set Target

Using Environment Properties and Functions

scope to Disabled, the target PC displays information as text. To use
all the features of the target scope, you also need to install a keyboard
on the target PC.

10 Set the Target scope property to Enabled.

Changing Environment Properties with a
Command-Line Interface for Default Target PCs

The xPC Target software lets you define and change different properties.
These properties include the path to the C/C++ compiler, the host COM port,
the logging buffer size, and many others. Collectively these properties are
known as the xPC Target environment.

You can use the command-line functions to write an M-file script that accesses
the environment settings according to your own needs. For example, you

could write an M-file that switches between two targets.

The following procedure shows how to change the COM port property for
your host PC from COM1 to COM2:

1 In the MATLAB window, type

setxpcenv('RS232HostPort', 'COM2")

The up-to-date column shows the values that you have changed, but have
not updated.

HostTargetComm :RS232 up to date
RS232HostPort :COM1 com2
RS232Baudrate 1115200 up to date

Making changes using the function setxpcenv does not change the current
values until you enter the update command.

2 In the MATLAB window, type

updatexpcenv

The environment properties you changed with the function setxpcenv
become the current values.

6-7

6 Software Environment and Demos

HostTargetComm :RS232 up to date
RS232HostPort :Com2 up to date
RS232Baudrate 1115200 up to date

6-8

xPC Target™ Demos

xPC Target Demos

In this section...

“Introduction” on page 6-9

“To Locate or Edit a Demo Script” on page 6-11

Introduction

The xPC Target demos are used to demonstrate the features of the xPC Target
product. They are also M-file scripts that you can view to understand how to
write your own scripts for creating and testing target applications.

There are two categories of xPC Target demos, general applications and
drivers. The following lists the general application demos.

Description

Filename

Real-time parameter tuning and data logging

Parameter Tuning and
Data Logging

Freerun display mode of anxPC Target scope
of type host

Signal Tracing With a
Host Scope in Freerun
Mode

A software triggered xPC Target scope of type
host

Signal Tracing Using
Software Triggering

A signal triggered xPC Target scope of type host

Signal Tracing Using
Signal Triggering

A scope triggered xPC Target scope of type host

Signal Tracing Using
Scope Triggering

Signal tracing with an xPC Target scope of type
target

Signal Tracing With a
Target Scope

Pre- and posttriggering of an xPC Target scope
of type host

Pre- and Post-Triggering
of a Host Scope

Time- and value-equidistant data logging

Time- and
Value-Equidistant Data
Logging

6 Software Environment and Demos

Description Filename

Logging signal data to a file on the target PC Data Logging With a File
Scope

Frame signal processing Frame Signal Processing

Note This demo requires Signal Processing

Blockset™ software.

xPC Target software as a real-time spectrum Spectrum Analyzer

analyzer

The Driver demos category contains demos for a number of driver applications,
including:

¢ Analog and digital I/O

e ARINC 429

¢ Asynchronous events

e CAN

¢ Digital signal processing
e MIL-STD-1553

e RS-232

¢ Raw Ethernet

e Shared/reflective memory

e UDP

Note Because these demos illustrate the use of driver blocks in an xPC
Target environment, you might need appropriate hardware to properly run
these demos.

6-10

xPC Target™ Demos

You can access xPC Target general application and driver demos through
the MATLAB Online Help. In this window, xPC Target > Demos to list
the available demo categories.

To Locate or Edit a Demo Script
1 In the MATLAB Command Window, type

which scfreerundemo

The MATLAB interface displays the location of the M-file.
C:\MATLAB\toolbox\rtw\targets\xpc\xpcdemos\scfreerundemo.m
2 Type

edit scfreerundemo

The MATLAB interface opens the M-file in a MATLAB editing window.

6-11

6 Software Environment and Demos

6-12

Working with Target PC
Environments

7 Working with Target PC Environments

Target Environment Command-Line Interface

In this section...

“Creating Target PC Environment Object Containers” on page 7-2
“Displaying Target PC Environment Object Property Values” on page 7-2
“Setting Target PC Environment Collection Object Properties” on page 7-3
“Adding Target PC Environment Collection Objects” on page 7-4
“Removing Target PC Environment Collection Objects” on page 7-4
“Getting Target PC Environment Object Names” on page 7-4

“Changing Target PC Environment Object Defaults” on page 7-5
“Working with Particular Target PC Object Environments” on page 7-5

Creating Target PC Environment Object Containers

xpctarget.targets is a container that manages target PC environment
collection objects. To create an object container of type xpctarget.targets,
use the constructor command xpctarget.targets. For example, the following
creates a tgs object. In the MATLAB window, type

tgs = xpctarget.targets

The resulting target PC object container is tgs (target PC environment
collection object) through which you can manage target PC environment
objects.

Displaying Target PC Environment Object Property
Values

To display the properties of a target PC environment collection object, use the
target PC object container method get. You can use either a method syntax
or an object property syntax.

The syntax get(env_collection_object) can be replaced by

env_collection_object.get

Target Environment Command-Line Interface

In the MATLAB window, type

tgs.get
CCompiler: 'VisualC'
CompilerPath: 'c:\Microsoft Visual Studio'
DefaultTarget: [1x1 xpctarget.env]
NumTargets: 2

To display the value of particular target PC environment collection object
property, use the syntax get(env_collection_object, property_name) or
env_collection_object.property_name

In the MATLAB window, type

tgs.CCompiler
ans =
VisualC

Setting Target PC Environment Collection Object
Properties

To set the properties of a target PC environment collection object, use the
target PC environment collection object method set. You can use either a
method syntax or an object property syntax.

The syntax set(env_collection object, property name) can be replaced
by

env_collection_object.property_name=new_property_value

To change the compiler specification, in the MATLAB window, type

tgs.CCompiler=Watcom
tgs.CompilerPath=c:\Watcom

Note that if you change the compiler type (CCompiler), you must also change
the compiler path (CompilerPath).

To change the 3.5-inch drive specification from a: to b:, type

tgs.FloppyDrive='b:"'

7 Working with Target PC Environments

Adding Target PC Environment Collection Objects

To add a target PC environment collection object, use the target PC
environment collection object method add. In the MATLAB window, type

tgs.Add

Check that an additional target PC environment collection object has been
added. Type

tgs.get
CCompiler: 'VisualC'
CompilerPath: 'c:\Microsoft Visual Studio'
DefaultTarget: [1x1 xpctarget.env]
NumTargets: 3

Removing Target PC Environment Collection Objects

To delete a target PC environment collection object, use the environment
collection object method, Remove, of the tgs object. In the MATLAB window,

type

tgs.Remove('TargetPCName')

Getting Target PC Environment Object Names

By default, each time you add a target PC environment object, xPC Target
names that object with the string TargetPCN, where N increments with each
subsequent target PC environment object with that base name.

To get a target PC environment object, use the target PC environment
collection object method getTargetNames. Type

tgs.getTargetNames
ans =
'TargetPC1'
'TargetPC2'
'TargetPC3'

You can change a target PC environment object name through the xPC
Target Explorer, or programmatically by setting the Name property of the
environment object.

Target Environment Command-Line Interface

Changing Target PC Environment Object Defaults

By default, the first target PC environment object is the default one.
Functions such as getxpcenv and setxpcenv operate only on the default
target PC environment object.

To make another environment object be the default one, use the target PC
environment collection object method makeDefault. Type

tgs.makeDefault('TargetPC2")

Working with Particular Target PC Object
Environments

To manage the properties of a particular target PC object environment, use the
target PC object collection environment method Item. This method retrieves
an xPC Target environment object from the xpctarget.targets class. You
can then assign this object to a variable and manipulate that object. Type

env2=tgs.Item('TargetPC2')
env2 is now the target environment object for TargetPC2.

If you want to work with the default target PC object environment, use the
DefaultTarget property. For example,

env=tgs.DefaultTarget

With the object variables, you can manage the target PC environment object
properties. For example, to get the object properties, type

env2.get
Name: 'TargetPC2'
HostTargetComm: 'TcpIp'
TargetRAMSizeMB: 'Auto’
MaxModelSize: '1MB'
TargetScope: 'Enabled'’
TargetBoot: 'BootFloppy'
EmbeddedOption: 'Enabled’
SecondaryIDE: 'off'
RS232HostPort: 'COM1'
RS232Baudrate: '115200'

7-5

7 Working with Target PC Environments

TcplpTargetAddress: '222.222,222.222°
TcpIpTargetPort: '22222'
TcpIpSubNetMask: '255.255.255.255'

TcpIpGateway: '255.255.255.255"
TcpIpTargetDriver: 'I82559'
TcpIpTargetBusType: 'PCI'
TcpIpTargetISAMemPort: '0x300'
TcpIpTargetISAIRQ: '5'

Using the dot notation, change the properties as necessary. For example, to
change the IP address of TargetPC2 to 192.168.0.10, the subnet mask to
255.255.255.0, type

env2.TcpIpTargetAddress='192.168.0.10"'
env2.TcpIpSubNetMask="'255.255.255.0"

To check your changes, type

env2.get
Name: 'TargetPC2'
HostTargetComm: 'TcpIp'
TargetRAMSizeMB: 'Auto’
MaxModelSize: '1MB'
TargetScope: 'Enabled'’
TargetBoot: 'BootFloppy'
EmbeddedOption: 'Enabled’
SecondaryIDE: 'off'
RS232HostPort: 'COMT1'
RS232Baudrate: '115200'
TcpIpTargetAddress: '192.168.0.10°'
TcpIpTargetPort: '22222'
TcpIpSubNetMask: '255.255.255.0'
TcpIpGateway: '255.255.255.255"
TcpIpTargetDriver: 'I82559'
TcpIpTargetBusType: 'PCI'
TcpIpTargetISAMemPort: '0x300'
TcpIpTargetISAIRQ: '5'

7-6

Target Environment Command-Line Interface

Alternatively, you can type

env.TcpIpTargetPort

ans =

22222
env2.TcpIpTargetAddress
ans =

192.168.0.10

7-7

7 Working with Target PC Environments

Using the Target PC
Command-Line Interface

You can interact with the xPC Target environment through the target
PC command window. The xPC Target software provides a limited set of
commands that you can use to work with the target application after it

has been loaded to the target PC, and to interface with the scopes for that
application.

8 Using the Target PC Command-Line Interface

Target PC Command-Line Interface

In this section...

“Introduction” on page 8-2

“Using Target Application Methods on the Target PC” on page 8-2
“Manipulating Target Object Properties from the Target PC” on page 8-3
“Manipulating Scope Objects from the Target PC” on page 8-4
“Manipulating Scope Object Properties from the Target PC” on page 8-5
“Aliasing with Variable Commands on the Target PC” on page 8-6

Introduction

This interface is useful with stand-alone applications that are not connected
to the host PC. You can type commands directly from a keyboard on the target
PC. As you start to type at the keyboard, a command window appears on

the target PC screen.

For a complete list of target PC commands, refer to “Target PC Commands”
on page 16-2

Using Target Application Methods on the Target PC

The xPC Target software uses an object-oriented environment on the host PC
with methods and properties. While the target PC does not use the same
objects, many of the methods on the host PC have equivalent target PC
commands. The target PC commands are case sensitive, but the arguments
are not.

After you have created and downloaded a target application to the target PC,
you can use the target PC commands to run and test your application:

1 On the target PC, press C.

The target PC command window is activated, and a command line opens.
If the command window is already activated, do not press C. In this case,
pressing C is taken as the first letter in a command.

Target PC Command-Line Interface

2 In the Cmd box, type a target PC command. For example, to start your
target application, type

start

3 To stop the application, type

stop

Once the command window is active, you do not have to reactivate it before
typing the next command.

Manipulating Target Object Properties from the
Target PC

The xPC Target software uses a target object to represent the target kernel
and your target application. This section shows some of the common tasks
that you use with target objects and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target PC.

1 On the target PC keyboard, press C.
The target PC activates the command window.

2 Type a target command. For example, to change the frequency of the signal
generator (parameter 1) in the model xpcosc, type

setpar 1=30

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

3 Check the value of parameter 1. For example, type

p1

8-3

8 Using the Target PC Command-Line Interface

8-4

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

4 Check the value of signal 0. For example, type

s0

The command window displays a message to indicate that the new
parameter has registered.

System: SO has value 5.1851

5 Change the stop time. For example, to set the stop time to 1000, type

stoptime = 1000

The parameter changes are made to the target application but not to the
target object. When you type any xPC Target command in the MATLAB
Command Window, the target PC returns the current properties of the
target object.

Note The target PC command setpar does not work for vector parameters.

To see the correlation between a parameter or signal index and its block, you
can look at the model_name_pt.c or model_name_bio.c of the generated code
for your target application.

Manipulating Scope Objects from the Target PC

The xPC Target software uses a scope object to represent your target scope.
This section shows some of the common tasks that you use with scope objects.

These commands create a temporary difference between the behavior of the
target application and scope object. The next time you access the scope object,

the data is updated from the target PC.

1 On the target PC keyboard, press C.

Target PC Command-Line Interface

The target PC activates the command window.

2 Type a scope command. For example, to add a target scope (scope 2) in the
model xpcosc, type

addscope 2

The xPC Target software adds another scope monitor to the target PC
screen. The command window displays a message to indicate that the new
scope has registered.

Scope: 2, created, type is target SO

3 Type a scope command. For example, to add a signal (0) to the new scope,
type

addsignal 2=0

The command window displays a message to indicate that the new
parameter has registered.

Scope: 2, signal 0 added
You can add as many signals as necessary to the scope.
4 Type a scope command. For example, to start the scope 2, type
startscope 2

The target scope 2 starts and displays the signals you added in the previous
step.

Note If you add a target scope from the target PC, you need to start that scope
manually. If a target scope is in the model, starting the target application
starts that scope automatically.

Manipulating Scope Object Properties from the
Target PC

This section shows some of the common tasks that you use with target objects
and their properties.

8-5

8 Using the Target PC Command-Line Interface

8-6

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target PC.

1 On the target PC keyboard, press C.
The target PC activates the command window.

2 Type a scope property command. For example, to change the number of
samples (1000) to acquire in scope 2 of the model xpcosc, type

numsamples 2=1000

3 Type a scope property command. For example, to change the scope mode
(numerical) of scope 2 of the model xpcosc, type

scopemode 2=numerical
The target scope 2 display changes to a numerical one.

Aliasing with Variable Commands on the Target PC

Use variables to tag (or alias) unfamiliar commands, parameter indices, and
signal indexes with more descriptive names.

After you have created and downloaded a target application to the target PC,
you can create target PC variables.

1 On the target PC keyboard, type a variable command. For example, if you

have a parameter that controls a motor, you could create the variables
on and off by typing

setvar on = p7 =1
setvar off = p7 = 0

The target PC command window is activated when you start to type, and a
command line opens.

Target PC Command-Line Interface

2 Type the variable name to run that command sequence. For example, to
turn the motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

8-7

8 Using the Target PC Command-line Interface

Working with Target PC
Files and File Systems

® “Introduction” on page 9-2

e “FTP and File System Objects” on page 9-4
e “Using xpctarget.ftp Objects” on page 9-5

e “Using xpctarget.fs Objects” on page 9-9

9 Working with Target PC Files and File Systems

Introduction

xPC Target scopes of type file create files on the target PC. To work with
these files from the host PC, you need to work with the xpctarget.ftp and
xpctarget.fs objects. The xpctarget.ftp object allows you to perform basic
file transfer operations on the target PC file system. The xpctarget.fs object
allows you to perform file system-like operations on the target PC file system.

You cannot direct the scope to write the data to a file on the xPC Target host
PC. Once the software has written the signal data file to the target PC, you
can access the contents of the file for plotting or other inspection from the host
PC. The software can write data files to

e The C:\ or D:\ drive of the target PC. This can be a serial ATA (SATA) or
parallel ATA (PATA)/Integrated Device Electronics (IDE) drive. The xPC
Target software supports file systems of type FAT-12, FAT-16, or FAT-32.
Ensure that the hard drive is not cable-selected and that the BIOS can
detect it. The type of file system (FAT-12, FAT-16, or FAT-32) limits the
maximum size of the file.

If you have a target PC with multiple partitions on a hard drive, an The
xPC Target software scope of type file can access those partitions if
they are formatted with FAT-12, FAT-16, or FAT-32. It will ignore any
unsupported file systems.

e A 3.5-inch disk drive.

¢ Disks connected to a secondary IDE controller. The software supports up to
four drives through the second IDE controller. By default, it works with
drives configured as the primary master. If you want to use a secondary
IDE controller, you must configure the xPC Target software for it (see
“Converting xPC Target File Format Content to Double Precision Data” on
page 9-12 in Chapter 6, “Software Environment and Demos”).

The largest single file that you can create is 4 GB.

Note that writing data files to 3.5-inch disk drives is considerably slower
than writing to hard drives.

You can access signal data files, or any target PC system file, in one of the
following ways:

Introduction

e If you are running the target PC as a stand-alone system, you can access
that file by rebooting the target PC under an operating system such as DOS
and accessing the file through the operating system utilities.

¢ [f you are running the target PC in conjunction with a host PC, you
can access the target PC file from the host PC by representing that
file as an xpctarget.ftp object. Through the MATLAB interface, use
xpctarget.ftp methods on that FTP object. The xpctarget.ftp object
methods are file transfer operations such as get and put.

¢ If you are running the target PC in conjunction with a host PC, you can
access the target PC file from the host PC by representing the target PC file
system as an xpctarget.fs object. Through the MATLAB interface, use
the xpctarget.fs methods on the file system and perform file system-like
methods such as fopen and fread on the signal data file. These methods
work like the MATLAB file I/O methods. The xpctarget.fs methods also
include file system utilities that allow you to collect target PC file system
information for the disk and disk buffers.

This topic describes procedures on how to use the xpctarget.ftp and
xpctarget.fs methods for common operations. See “Function Reference” and
“Functions” for a reference of the methods for these objects.

Note This topic focuses primarily on working with the target PC data files
that you generate from an xPC Target scope object of type file.

For a demo of how to perform data logging with scopes of type file, see Data
Logging With a File Scope.

9-3

9 Working with Target PC Files and File Systems

FTP and File System Objects

The xPC Target software uses two objects, xpctarget.ftp and xpctarget.fs
(file system), to work with files on a target PC. You use the xpctarget.ftp
object to perform file transfer operations between the host and target PC. You
use the xpctarget.fs object to access the target PC file system. For example,
you can use an xpctarget.fs object to open, read, and close a signal data file
created by an xPC Target scope of type file.

Note This feature provides FTP-like commands, such as get and put.
However, it is not a standard FTP implementation. For example, the software
does not support the use of a standard FTP client.

To create an xpctarget.ftp object, use the FTP object constructor function
xpctarget.ftp. In the MATLAB Command Window, type

f = xpctarget.ftp

The xPC Target software uses a file system object on the host PC to represent
the target PC file system. You use file system objects to work with that file
system from the host PC.

To create an xpctarget.fs object, use the FTP object constructor function
xpctarget.fs. In the MATLAB window, type

f = xpctarget.fs

Both xpctarget.ftp and xpctarget.fs belong to the xpctarget.fsbase
object. This object encompasses the methods common to xpctarget.ftp
and xpctarget.fs. You can call the xpctarget.fsbase methods for both
xpctarget.ftp and xpctarget.fs objects. The xPC Target software creates
the xpctarget.fsbase object when you create either an xpctarget.ftp or
xpctarget.fs object. You enter xpctarget.fsbase object methods in the
MATLAB Command Window on the host PC or use M-file scripts.

Using xpctarget.fip Objects

Using xpctarget.ftp Objects

In this section...

“Overview” on page 9-5

“Accessing Files on a Specific Target PC” on page 9-6

“Listing the Contents of the Target PC Folder” on page 9-7
“Retrieving a File from the Target PC to the Host PC” on page 9-7
“Copying a File from the Host PC to the Target PC” on page 9-8

Overview

The xpctarget.ftp object enables you to work with any file on the target PC,
including the data file that you generate from an xPC Target scope object of
type file. You enter target object methods in the MATLAB window on the
host PC or use M-file scripts. The xpctarget.ftp object has methods that
allow you to use

® cd to change directories

e dir to list the contents of the current folder

® get (ftp) to retrieve a file from the target PC to the host PC

® mkdir to make a folder

® put to place a file from the host PC to the target PC

® pwd to get the current working folder path

® rmdir to remove a folder

The procedures in this section assume that the target PC has a signal data
file created by an xPC Target scope of type file. This file has the pathname
C:\data.dat. See “Simulink Model” in the xPC Target Getting Started Guide

and “Signal Tracing with xPC Target Scope Blocks” on page 3-48 in this
documentation for additional details.

The xPC Target software also provides methods that allow you to perform file

system-type operations, such as opening and reading files. For a complete list
of these methods, see “Using xpctarget.fs Objects” on page 9-9.

9-5

9 Working with Target PC Files and File Systems

Accessing Files on a Specific Target PC

You can access specific target PC files from the host PC for the xpctarget.ftp
object.

Use the xpctarget. ftp creator function. If your system has multiple targets,
you can access specific target PC files from the host PC for the xpct